
1995, 1996Institute for Defense Analyses, 1801 N. Beauregard Street,
Alexandria, Virginia 22311-1772 • (703) 845-2000.

Permission is granted to any individual or institution to use, copy, or distribute
this document in its paper or digital form so long as it is not sold for profit or used
for commercial advantage, and that it is reproduced whole and unaltered, credit to
the source is given, and this copyright notice is retained. The material may be
reproduced by or for the U.S. Government pursuant to the copyright license under
the clause at DFARS 252.227-7013 (10/88). This document may not be posted on
any web, ftp, or similar site without the permission of the Institute for Defense
Analyses.

The work was conducted under contract DASW01-94-C-0054, Task T-S5-1266,
for the Defense Information Systems Agency. The publication of this IDA
document does not indicate endorsement by the Department of Defense, nor
should the contents be construed as reflecting the official position of that Agency.

iii

PREFACE

This document was prepared by the Institute for Defense Analyses (IDA) under the

task order, Object-Oriented Technology Implementation in the DoD. This document relates

to a task objective to develop strategies for the implementation of object-oriented technol-

ogy (OOT) within specific information technology areas within the Department of Defense.

This document is one of a set of four reports on OOT implementation. The other reports,

focusing on more specialized areas of OOT, are IDA Paper P-3143,Object-Oriented Pro-

gramming Strategies for Ada; IDA Paper P-3144,Legacy System Wrapping for Department

of Defense Information System Modernization; and IDA Paper P-3145,Software Reengi-

neering Using Object-Oriented Technology. All of this work was sponsored by the Defense

Information Systems Agency (DISA).

The following IDA research staff members were reviewers of this document: Dr.

Edward A. Feustel, Dr. Richard J. Ivanetich, Dr. Reginald N. Meeson, Dr. Judy Popelas,

Mr. Clyde G. Roby, and Mr. Glen R. White.

iv

Table of Contents

v

EXECUTIVE SUMMARY .. ES-1

CHAPTER 1. INTRODUCTION ... 1

1.1 BACKGROUND ... 1
1.2 PURPOSE .. 1
1.3 APPROACH .. 2
1.4 ORGANIZATION OF DOCUMENT ... 3

CHAPTER 2. OOT AND DOD SOFTWARE NEEDS .. 5

2.1 LEGACY SYSTEMS .. 5
2.2 DOD SOFTWARE NEEDS .. 7
2.3 OOT FEATURES AND BENEFITS .. 9
2.4 OOT STRATEGY CONSTRAINTS .. 11

2.4.1 MIL-STD-498 ... 12
2.4.2 Lifecycle Process Model (DoD 8120) ... 12
2.4.3 Functional Process Improvement (8020.1-M) ... 12
2.4.4 Technical Architecture Framework for Information Management 13

CHAPTER 3. OVERVIEW OF THE SOFTWARE LIFECYCLE 15

3.1 LIFECYCLE PHASES .. 15
3.2 LIFECYCLE PROGRAM STRATEGIES .. 17
3.3 OBJECT-ORIENTED DEVELOPMENT ... 20

CHAPTER 4. OBJECT-ORIENTED DEVELOPMENT ACTIVITES 25

4.1 OBJECT-ORIENTED ANALYSIS .. 25
4.2 OBJECT-ORIENTED DESIGN ... 26

4.2.1 System Design ... 27
4.2.2 Object Design .. 29

4.3 OBJECT-ORIENTED PROGRAMMING .. 30
4.4 OBJECT REPOSITORIES .. 31
4.5 OBJECT-ORIENTED TESTING ... 32
4.6 OBJECT-ORIENTED MAINTENANCE ... 33
4.7 OBJECT DATA MANAGEMENT .. 34

4.7.1 Object-Oriented Database Technology ... 34
4.7.2 Storage of Objects ... 36

 APPENDIX A. OBJECT-ORIENTED ANALYSIS ACTIVITIESA-1

LIST OF REFERENCES ..References-1

GLOSSARY ..Glossary-1

LIST OF ACRONYMS ... Acronyms-1

List of Figures

vii

Figure 1. Components of Different Types of Development Activities.............................. 6

Figure 2. OOT’s Objects and Classes.. 10

Figure 3. Alternative Program Strategies for System Lifecycle 17

Figure 4. Typical OO Development Iteration.. 22

Figure 5. The Baseball Model.. 22

Figure A-1. Illustration of a Use Case Model..A-4

Figure A-2. Customer Withdrawal Use Case ..A-5

Figure A-3. Preliminary Domain Model for a Warehouse SystemA-7

Figure A-4. Class Icon Examples ..A-13

Figure A-5. Examples of Class Link Diagram ConventionsA-14

Figure A-6. Example Object Model with Inheritance and AssociationsA-15

Figure A-7. A Single Inheritance Tree ..A-25

Figure A-8. A Multiple Inheritance Hierarchy ..A-26

Figure A-9. Part-Whole Relations in OMT Object Models...A-30

Figure A-10. Example of Part-Whole Structures...A-30

Figure A-11. Plan Generation and Selection Object Model Example.........................A-32

Figure A-12. CRC Card Layout...A-34

Figure A-13. Coad-Yourdon’s Multi-Layer, Multi-Component ModelA-38

Figure A-14. Interaction Diagram for an Order Packing Scenario..............................A-42

Figure A-15. Event Trace Diagram for a Phone Call ..A-43

Figure A-16. A State Transition Diagram for a Phone Line..A-45

Figure A-17. Data Flow Diagram for an Automated Teller MachineA-49

List of Tables

Table A-1. Different Types of A Priori Partitions of OO ModelsA-39

ES-1

EXECUTIVE SUMMARY

Purpose

This report provides an overview of object-oriented technology (OOT) techniques

and methods that can be applied to information system development and maintenance in

the Department of Defense (DoD). In an effort to modernize its information systems, the

DoD is transitioning to the use of OOT, which covers a wide range of techniques, tools, and

methods, with varying notations and semantics. Since there is such diversity within OOT,

the Defense Information Systems Agency has tasked the Institute for Defense Analyses to

determine which OOT techniques and methods were better suited to the information system

needs of the DoD. This document is the first of a four-volume set that addresses the use of

OOT throughout the software lifecycle and as applied to the more specialized problems of

the DoD such as migrating legacy systems. Focusing on the use of OOT for system analysis

and modeling, this report provides an extensive survey of object-oriented analysis tech-

niques and activities.

Background

OOT consists of a set of methodologies and tools for developing and maintaining

software systems using software objects composed of data and operations as the central

paradigm. OOT has shown considerable promise for contributing to satisfaction of DoD

needs for software reuse, streamlined system development, systems interoperability, and

reduction of maintenance and modification costs. In addition, OOT is nearing maturity in

several areas, including OO software engineering methodology, OO programming lan-

guages, computer-aided software engineering tools, OO database management systems,

and OO standards.

Consequently, OOT is positioned to aid the massive migration and reengineering of

DoD software systems from many outmoded systems to fewer, modernized, interoperable,

less costly systems. Nevertheless, the transition from traditional software technologies to

OOT is not trivial; a substantial learning period is required before the benefits of OOT can

be realized. This report is intended to facilitate that learning process by providing an intro-

ES-2

duction on using OOT for developing new and migrational DoD information systems and

an analysis of potential issues in the DoD use of OOT.

OOT Within DoD Software Development

Among the four DoD-defined software program lifecycle strategies for automated

information systems examined in this report, the “grand design” strategy was found inade-

quate for much OO development because it excludes any iteration among phases. The

DoD-defined “incremental” strategy also contains a barrier to effective OO development

because it disallows iteration in determining specifications. The “evolutionary” strategy is

the best match for typical OO systems development, although many OO systems may best

fit in the “other” lifecycle strategy because they often do not include the incremental deliv-

ery of capabilities characteristic of an evolutionary strategy.

OOT may be incorporated at every stage of a software system lifecycle, including

all the traditional phases of analysis, design, programming, test, and maintenance. Analysis

of alternative methodologies for the OO analysis and OO design phases identified their cen-

tral activities as object modeling and dynamic modeling. Every OO methodology devel-

oped some model of object classes and their features (e.g., attributes, services, and

associations). Some type of dynamic modeling of possible courses of events in the opera-

tions of the system are also found in any complete OO development methodology. More

specifically, interaction (or event trace) diagrams and state-transition diagrams are the com-

monly preferred formats for dynamic models. Use case (or scenario) analysis, while not

universal, has been increasingly recognized as a valuable tool for many aspects of OO

development, including requirements analysis, object modeling, dynamic modeling, and

testing. However, while functional modeling using dataflow diagrams appears in several

methodologies, it was found to be superfluous and best avoided unless such models already

exist as part of legacy documentation.

1

CHAPTER 1. INTRODUCTION

1.1 BACKGROUND

The Department of Defense (DoD) is moving from many outmoded and proprietary

automated information systems to a few modernized and less costly systems capable of

such features as interoperability. This transition involves the migration and reengineering

of legacy systems as well as the development of new automated information systems

(AISs), and raises a number of issues around the proposed use of object-oriented technol-

ogy (OOT). Such issues include the substantial learning period and curve needed to make

the transition from traditional software technologies to OOT, and the inadequacy of most

of the current DoD-defined lifecycle strategies for software programs. To complicate mat-

ters, OOT covers a wide range of techniques, tools, and methodologies, all of which have

varying notations and semantics. With such diversity in mind, the Defense Information Sys-

tems Agency has tasked the Institute for Defense Analyses (IDA) to determine which OOT

techniques and methods were better suited to the AIS needs of the DoD.

1.2 PURPOSE

This report provides an overview of object-oriented technology (OOT) for use in

development and maintenance of AISs in the DoD. These information systems range from

command, control, communications, computers, and intelligence systems such as the Glo-

bal Command and Control System to the more narrowly conceived information manage-

ment systems for domains such as administration, manpower, personnel, medical,

contracting, operations, logistics, materiel management, supply, and maintenance.

In general, the report describes how OOT may be used in developing these types of

AISs within the constraints of applicable DoD standards, policies, and procedures. In part,

it is an introduction to OOT as applicable to DoD information systems, abstracting from

existing object-oriented (OO) methodologies all the essential activities in OO development,

ranging from requirements analysis to OO programming. A background in OOT is also pro-

vided that supports comprehension of issues and choices in OO development that are

addressed in a set of IDA companion reports [IDA95b, IDA95c, IDA95d]. It is not intended

2

to provide an analysis of the merits of using OOT compared with alternatives such as struc-

tured analysis and design; this is provided by an earlier report [IDA93a]. Only a brief sum-

mary of the reported benefits of OOT is provided in this report to place the discussion here

of OOT use within the context of its perceived benefits for DoD systems.

This report targets a broad audience of individuals looking to establish or strengthen

a general understanding of OOT for information systems; therefore, it will be of specific

interest to DoD software development managers, project managers, technical leads, and

software engineers. It is intended to assist DoD software developers in applying OOT to the

development of OO systems, whether in new development or in migration from legacy sys-

tems.

1.3 APPROACH

The approach taken for the main body of this report involved comparative analysis

of a group of popular OO development methodologies for commonalities and trends. OO

development is divided into the four traditional development stages: analysis, design, pro-

gramming, and test. While OO methodologies generally recommend against a single linear

traversal of these stages in favor of iterative loops through them, the separate stages and

associated activities are usually distinguished. The essential activities of each stage were

extracted from the different methodologies, and differences in placement of common activ-

ities by different methodologies were noted. This analysis appears in Chapter 3. Detailed

discussion of OO programming techniques in Ada (both 83 and 95 versions) is reserved for

a companion report [IDA95b].

A different approach was taken to analyzing alternatives for object data manage-

ment since there is little in the way of distinct OO methodology in this area. Here, the com-

mon alternatives for handling the data components of an OO system were examined and

their requirements and limitations identified.

New development activities using OOT follow the basic steps of OO analysis,

design, and implementation outlined in Chapter 3. System migration involving reengineer-

ing or wrapping also requires the basic OO development activities discussed in this report,

though they must be supplemented with their own specialized activities. Additional com-

panion reports provide separate detailed discussions of wrapping [IDA95c] and reengineer-

ing activities [IDA95d].

3

1.4 ORGANIZATION OF DOCUMENT

Chapter 2 discusses legacy systems, DoD software needs, the benefits and features

of OOT which address these needs, applicable DoD standards, policies, and procedures,

and OOT strategy constraints. Chapter 3 provides an overview of the software lifecycle

models, describing how OOT may be incorporated in them. Chapter 4 discusses the use of

OOT at each specific stage of the lifecycle model. Appendix A provides a detailed discus-

sion and examples of OO analysis categories: requirements analysis, object modeling,

dynamic modeling, and functional modeling. Lists of references, glossary, acronyms, and

an index are provided at the end of the report.

4

5

CHAPTER 2. OOT AND DOD SOFTWARE NEEDS

2.1 LEGACY SYSTEMS

OOT has shown considerable promise for contributing to satisfaction of DoD needs for

streamlined system development, systems interoperability, software reuse, and reduction of

maintenance and modification costs (as briefly explained later in Section 2.1 on page 5). At the

same time, OOT is approaching maturity in many areas such as OO software engineering meth-

odology, OO programming languages, computer-aided software engineering (CASE) tools for

object-oriented analysis, design, and implementation, OO databases, and OO standards. One

recent milestone in OO maturity was the release of the Ada 95 standard which brings the full

capabilities of OO programming to Ada. OOT is well situated to assist in the massive migration

and reengineering of DoD information systems from many outmoded, isolated, or proprietary

legacy systems to fewer, modernized, interoperable, open systems. In addition, the benefits of

OOT can be realized without the constraints of legacy systems within newly developed auto-

mated information systems (AISs).

Legacy systems are understood here in the broad sense of any currently operating auto-

mated system that incorporates obsolete computer technology, such as proprietary hardware

architectures, closed systems, “stovepipe” designs, obsolete programming languages, or obso-

lete database systems. The process of software migration consists of converting one or more

legacy software systems or applications to a modernized one. This may involve changes in

hardware, operating systems, and system architecture, in addition to conversions of program-

ming code and databases. Migration may proceed in stages with progressive modernization of

more of the legacy system in each stage. The target of a system migration is the intended end

result of that migration, and may include new target requirements, hardware, architecture,

design, data management, and implementation aspects.

Different strategies and tactics are possible for applying OOT to different types of DoD

information system development. We distinguish three different types of software develop-

ment; these categories differ primarily in the extent to which legacy software contributes to

software development, as illustrated in Figure 1.

6

Code

Legacy
Wrapping

[IDA95c]

New
Development

Legacy
Components

and/or

Retained
Components

Req’
mts

Code

Database

and/or

Req’
mts

Development
Activity

New
Req’
mts

and/or

Wrappers around legacy
components:

New
Components

Possibly additional
requirements; new
program code, and/
or new databases.

and/or

New
Req’
mts

and/or

New requirements,
new program code,
and/or new databases.

and

Legacy
Reengineering

[IDA95d]

New Database

Req’
mts

Code

and/or

New Database

and/or

Figure 1. Components of Different Types of Development Activities

Database

Database

Req’
mts

Code

and/or

and/or

Database

Legacy Software
Method/Operations

Object/Class
I/O Links

7

• Legacy Wrapping. Wrapping of components of legacy systems retains these com-

ponents within OO wrappers that make them look like software objects within an

otherwise modernized OO system. Either legacy code, legacy databases, or both

may be wrapped during a particular migration phase.

• Legacy Reengineering. Reengineering some part of a legacy system incorporates

some legacy requirements, functionality, and possibly some of the legacy data, but

recodes all of its software. Reengineered program code is illustrated as an enclosed

set of linked ovals to represent the interacting objects of OO programs. Both wrap-

ping and reengineering may be applied simultaneously to different components of

a legacy system.

• New Development. New development activities are practically independent of any

legacy systems, and typically involve both new code and new databases, though

they may be limited to one or the other.

2.2 DOD SOFTWARE NEEDS

Recent DoD studies, directives, and policies have given explicit recognition to the

pressing need for changes in DoD software, especially in information systems. A plan for Cor-

porate Information Management (CIM) for the DoD, developed in 1990, outlined a vision for

DoD information technology in the year 2000 that propounded most of the themes of contem-

porary DoD information system modernization plans, including the following [DOD90, pp. 10-

11]:

• Open systems architectures to accommodate a wide variety of centralized and dis-

tributed technologies and products, and of vendor independence.

• Information systems interoperability across the DoD and with allies.

• Reduction of life-cycle costs and development time through increased reuse, reli-

ance on commercial software, use of high-order languages, and improved software

development methodologies.

In 1991, the DoD Software Technology Strategy was developed based upon identified

features of the changing DoD and world environment that would affect DoD software needs

[DOD91, pp. ES-4 - ES-5]:

• Coping with the proliferation of less predictable threats in Eastern Europe and the

Third World requires more flexible, interoperable, secure, and reliable C3I, which

is software intensive.

8

• Reduced DoD budgets will increase automation needs to reduce inefficiencies and

personnel costs, thus creating further demands on software. Affordability will

drive the DoD toward common modular components with flexible software sup-

port. This trend holds equally for DoD combat systems, DoD corporate manage-

ment systems, and manufacturing systems for DoD products.

• A reduced DoD worldwide presence increases the importance of rapid mobiliza-

tion and deployment which rely critically on software planning and logistics sup-

port.

• Reduced DoD human resource levels imply the need for more automated and

semi-automated systems to maintain force effectiveness (and to reduce casualty

rates). Software is an effective force multiplier for all DoD components.

• Increased networking of DoD systems places escalating strains on computer and

software security capabilities.

• Rapid advances in computer hardware capabilities create potential new mission so-

lutions and corresponding software challenges.

Analysis of these conditions and more specific DoD requirements led to the adoption

of a software technology strategy driven by five strategic themes [DOD91, pp. ES-6 –ES-7]:

1. Software reuse and megaprogramming - to allow DoD software applications to be

developed component-by-component rather than instruction-by-instruction, pro-

viding a stronger basis for interoperability.

2. Reengineering and post-deployment software support (PDSS) - will make the huge

DoD software inventory easier to support and modify.

3. Process support and technology/management synergy - use process technology

improvements to enable software projects to “work smarter.”

4. Commercial technology leverage - with DoD stimulation of commercial technology

to ensure support of DoD needs (and DoD use of COTS [commercial off-the-shelf

products]).

5. Integration of artificial intelligence and software engineering - to provide new func-

tionality and flexibility from AI with scalability and verifiability of “conventional”

software engineering.

These strategies were incorporated into DoD programs, standards, directives, and poli-

9

cies. DoD Directive 8120.1, for example, states the DoD policy to

Develop and enhance AISs [automated information systems] in a manner that
maximizes the use of standards-based commercial-off-the-shelf (COTS) prod-
ucts, non-developmental item (NDI) products, and commercial items, minimiz-
es the cost of development and the time to deployment, and achieves earliest
possible realization of benefits [DOD93a, p. 3].

This is in accord with the strategy of commercial technology leverage. And the instruction for

implementing this policy (8120.2) includes a minimum requirement at each phase of the soft-

ware lifecycle to support the strategy of software reuse, i.e., to “plan for the development and

utilization of reusable software assets” [DOD93b, p. 3-4].

The new MIL-STD-498 for software development and documentation provides more

specific criteria for evaluation and incorporation of reusable software [DOD92a]:

4.2.1.Reusable software. The contractor shall evaluate and incorporate reusable
software in accordance with the following requirements . . .

4.2.2.1Evaluating reusable software. The contractor shall evaluate reusable
software for use in product solutions and in the software engineering and test
environments. Criteria for suitability shall be the software’s ability to meet user
needs and to be cost-effective over the life of the system, including . . .

4.2.2.2Incorporating reusable software. The contractor shall incorporate reus-
able software that, based on the contractor’s analysis, will meet user needs and
be cost-effective over the life of the system . . .

2.3 OOT FEATURES AND BENEFITS

DoD information system needs are well-served by key features of object-oriented tech-

nologies, e.g., to reduce software costs and development time and to improve software reliabil-

ity.

OOT provides several benefits in meeting the needs identified for DoD AISs. OOT

achieves these benefits as a consequence of its fundamental paradigm of software objects and

classes of software objects as the basic components of software systems. A software object has

state, behavior, and identity; the structure and behavior of similar objects are defined in their

common class [BOO94a, p. 516]. Software objects represent real-world objects of all types

through attributes stored in a set of variables in an object data structure, as illustrated in Figure

2. The attributes of such objects are encapsulated, in the sense that their internal form is not

accessible outside the object or class. External information about an object’s attributes can only

be obtained through the access and update operations that are defined as part of its class. OOT

10

consists of a full range of software technologies based on such objects, including OO software

development methodologies, OO operating systems, OO programming languages, OO pro-

gramming techniques, OO database architectures, OO distributed programming architectures,

object class libraries, object frameworks, and more.

Libraries and repositories of software objects can promote interoperability by establish-

ing standard object classes that are available for use across many different software systems.

Standards such as the Common Object Request Broker Architecture (CORBA), developed by

the Object Management Group (OMG), have been developed to facilitate distributed access to

objects. At a higher level, frameworks, consisting of skeleton structures of many interacting

object types, can provide reusable frameworks for applications that share common require-

ments. Object encapsulation eases maintenance and modification by limiting the “ripple effect”

common to modifications in procedural programs, in which modification of one component

requires modification of others that interact with it and so on. Object repositories promote reuse

to reduce redundancy, so that the same objects and their associated services need not be re-

implemented for different systems. Inheritance of class attributes and operations by their sub-

classes reduces redundancy by allowing features common to multiple object types to appear in

just one place in a superclass common to those object types. Capabilities for overriding inher-

ited features facilitate reuse through support of tailoring of repository objects when their fea-

tures are not a precise match to those required in different applications.

Another OO feature that simplifies development and facilitates reuse ispolymorphism,

in which “a name (such as a variable declaration) may denote objects of many different classes

that are related by some common superclass; thus, any object denoted by this name is able to

respond to some common set of operations in different ways” [BOO94a, p. 517]. Development

Person

Figure 2. OOT’s Objects and Classes

Class-name

operation-1
operation-2

....

attribute-1
attribute-2

Class Elements Class Example Object Instance

Person_1

John Smith
101 Main Street
273-39-6211.....

name
address
social security no.

charge-time
earn-salary

11

is simplified because a single function call can replace the case statements and multiple func-

tion calls required by non-polymorphic languages. Reuse is facilitated because code using

polymorphic operations can easily be extended with new variants of existing classes without

changing the calls to these operations. Thus, existing code is more easily extended with new

capabilities when polymorphism is utilized. Examples of polymorphism are provided in the

separate reports on OO programming in Ada [IDA95b] and on wrapping legacy components

[IDA95c].

The reuse encouraged by OOT, in turn, serves to lower development costs once a sub-

stantial reuse library has been developed since less software has to be developed from scratch

for new (or reengineered) projects. In addition, reuse helps ensure higher quality, more reliable

software since library or repository components will ensure extensive testing, both prior to

placement in a repository and through field usage on prior projects.

For a thorough assessment of the potential costs and benefits of OOT for DoD informa-

tion systems, see the earlier study [IDA93a]. The principal costs of OOT use lie in the substan-

tial initial investment required to train development teams in this technology and the resources

required to initially establish repositories of reusable object classes and frameworks. The latter

costs, however, are faced by any approach to using reusable software. There may also be some

performance problems for certain types of database applications when many complex joins are

required if an OO database is used. Such database issues are discussed in Chapter 3. For elab-

oration on the advantages of OOT in specific commercial information system projects, see Dav-

id Taylor’s book, Object-Oriented Information Systems: Planning and Implementation

[TAYL92]. Other case studies of OO system development can be found in a more recent book

by Harmon et al.,Objects in Action: Commercial Applications of Object-Oriented Technolo-

gies [HRTY93].

2.4 OOT STRATEGY CONSTRAINTS

OOT use in DoD is constrained to conform to existing and projected DoD standards,

directives, and policies, key elements of which are cited here. Most of these constraints are

entirely compatible with a fully OO approach, although, in a few cases, a relaxation or tailoring

of a constraint may be required to ensure compliance of strategies with given constraints. Alter-

natively, an OO design may be modified to accommodate current constraints, for example, the

use of SQL for database queries, by storing persistent objects in a relational database instead

of an OO database.

12

2.4.1 MIL-STD-498

MIL-STD-498 [DOD93d], the new standard for DoD software development and docu-

mentation, is intended to improve compatibility with non-hierarchical design methods, such as

OO design, over the previous standards DOD-STD-2167A and DOD-STD-7935A which it

replaces [DOD92a, p. ii]. In particular, it is more supportive of iterative development models

that are commonly used in OOT applications, and provides alternatives to, and more flexibility

in, preparing documents. MIL-STD-498 was approved as an interim standard for two years in

a memo from the Office of the Secretary of Defense (OSD), dated November 8, 1994

[NEWB95]. This standard does not pose any barriers to the use of OOT for developing DoD

information systems.

2.4.2 Lifecycle Process Model (DoD 8120)

The DoD Directive (8120.1) and Instruction (8120.2) on Life Cycle Management

(LCM) of AISs identify four types of AIS program strategies: grand design, incremental, evo-

lutionary, and “other,” a catch-all for other program strategies. Explicit recognition of incre-

mental and evolutionary program strategies has special relevance to OOT-based software

programs since experience has shown that large-scale OO software is best managed in an iter-

ative fashion. Thus, this directive can accommodate the most effective life-cycle management

of large OO software systems through either of these strategies or the “other” strategy, as

explained later in Section 2.2 on page 15.

2.4.3 Functional Process Improvement (8020.1-M)

The DoD Directive (8020.1) and its accompanying Manual (8020.1-M) were estab-

lished to support the functional (business) process improvement activities of a DoD organiza-

tion. Functional process improvement is considered a key step before any information system

improvement takes place, since improvements to the functional process may have more effect

than specific system improvements. DoD 8020.1-M provides specific guidance on establishing

mission objectives and on modeling an organization’s enterprise-wide functional activities and

information requirements. The objective of the activity modeling, which is accomplished with

the IDEF0 modeling notation, is to identify “non-value added” activities. These non-value add-

ed activities would be eliminated in a revision of the organization’s functional process. The

objective of the information modeling, which is accomplished with the IDEF1X notation, is to

support data element standardization and data administration.

13

2.4.4 Technical Architecture Framework for Information Management

The Technical Architecture Framework for Information Management (TAFIM) com-

prises eight volumes of guidance for the evolution of the DoD technical infrastructure. It delin-

eates the services, standards, design concepts, components, and configurations that can be used

to guide the development of technical architectures that meet specific mission requirements. It

introduces and promotes interoperability, portability, and scalability of DoD information sys-

tems [DOD93c, p. 3]. The Director of Defense Information has directed the use of the TAFIM

by all new DoD information systems development and major modernization programs

[DOD93e].

The guidance provided by the TAFIM is quite broad and accommodating to OOT in

general, although there are a few specific areas where aspects of OOT are not fully supported

(at this writing). In particular, the only approved standard for database management is SQL

which does not directly support OO databases. In the area of programming languages, the Ada

95 standard for OO programming in Ada has not yet been included among programming lan-

guage standards cited by the TAFIM.

While the TAFIM does not yet incorporate standards for every aspect of OOT, it is

intended as “a set of evolving documents” [DOD93e]. Thus, we may reasonably expect that

future versions of the TAFIM will incorporate standards supportive of all aspects of OOT, as

they become available and as time permits their incorporation. The absence of a complete set

of OOT standards within the TAFIM reflects the lack of a consensus on certain aspects of OOT

in the broader information processing community, rather than any intentional exclusion of OOT

techniques from DoD systems.

More specifically, there is no consensus yet on standards for object-oriented database

management systems (OODBMS), although there is work in progress, e.g., by the Object Man-

agement Group and in the formulation of SQL-3. In the interim, it is possible to develop an OO

database conforming to current data management standards through explicit storage of object

data in a relational database management system (RDBMS) with external code completing the

support of inheritance, methods, and other object features not available directly in SQL (as dis-

cussed further in Chapter 3). This approach has been taken in at least one DoD AIS, the Base-

Level System Modernization (BLSM) program [HARR93a]. Alternatively, it may be possible

to get an exemption from the Information Technology Policy Board (ITPB) for direct use of a

commercial ODBMS, an approach that would address the interests in using a COTS product

when it is available.

14

The current limitations of the Ada 83 programming language standard should not be a

constraint on OOT use for much longer because of the new Ada 95 standard which fully sup-

ports OO programming. A limited public domain compiler already exists for the core function-

ality of Ada 95, and commercial compilers are expected shortly. However, fully validated

compilers for the full Ada 95 language are not expected for a while since all the validation

suites are not even expected until late 1995. In the interim, it is possible to program the func-

tionality of an OO language using Ada 83 (as described in the companion report [IDA95b]),

although it can never be as “clean” as Ada 95. Alternatively, an unvalidated Ada 95 compiler

may be used for development, provided that an upgrade to a validated compiler is performed

prior to the completion of a software development program.

15

CHAPTER 3. OVERVIEW OF THE SOFTWARE LIFECYCLE

Software development is accomplished in the context of a software lifecycle model that

defines the activities, phases, and products of each stage of software development. This chapter

reviews the types of software lifecycle models allowable for DoD software development and

discusses how the use of OOT fits within these specific models.

3.1 LIFECYCLE PHASES

DoD Instruction 8120.2 on AIS life-cycle management identifies five lifecycle phases:

0. Concept Exploration and Definition Phase - explores alternatives for satisfying the

documented mission need and defines the preferred program concept.

1. Demonstration and Validation Phase - agreement reached on program strategy.

Demonstrations and/or rapid prototyping completed and integrated into design.

Specifications and design are completed relative to program strategy.

2. Development Phase - includes development and testing. Activities may be

repeated for certain program strategies (e.g., incremental or evolutionary).

3. Production and Deployment Phase - completes deployment of the AIS.

4. Operations and Support Phase - operate and maintain AIS, or its increments,

evaluate its effectiveness, and plan its modernization.

While there need not be anything particularly object oriented about the concept explo-

ration and definition phase, even for a program committed to doing OO development, some OO

techniques might be applied even here. For example, the use case analysis developed by Jacob-

son [JACO93] for requirements analysis in OO systems could well be used for the essential

requirements analysis of this phase.1 OOT has more extensive contributions to make for sub-

sequent phases of the lifecycle.

1 Use case analysis is described in Appendix A, Section A.1.3.

16

The demonstrations of phase 1 may be designed, coded, and tested using many of the

same OO techniques used in the main development phase. OOT is especially well suited to the

rapid prototyping which is optional during this phase. Smalltalk development environments, in

particular, have proven very effective for rapid OO prototyping, whether or not Smalltalk is

used to implement the delivered system. In addition, phase 1 is where most of the system anal-

ysis and design must occur since its minimum required accomplishments include system spec-

ifications and design. Thus, OO analysis and design methods, and OO computer-aided software

engineering (CASE) tools will play leading roles in this phase of an OO program.

Phase 2, the development phase, is actually focused on implementation under this

description of the lifecycle. Note that the development phase of the software lifecycle is often

conceived more broadly to include analysis and design, as well as implementation. In any case,

during development, the OO modeling of analysis and design is brought to bear on implemen-

tation. Ordinarily, implementation of an OO system would use an OO programming language

(such as Smalltalk, C++, or Ada95), although other languages can be used with enough effort.

OO CASE tools may continue to be of benefit in supplying the OO models and in generating

skeletons of object classes in a supported OO language from the models. OO databases or OO

techniques for storing objects in relational databases are also likely to be involved in the devel-

opment phase.

Production and deployment are affected by the information architecture underlying a

system, which is partially determined by the basic data representations such as objects or rela-

tions. For example, a client-server model supplying information to multiple clients from des-

ignated information servers affects the logistics of deployment by its influence on the different

types of hardware and software required for different client and server stations. Using OOT in

systems development can affect the production and deployment phase through its requirements

for support and distribution of various OO capabilities, such as OO databases and OO commu-

nication protocols, on deployed platforms. Thus, while there is little, if any, OOT specific to

production and deployment, OOT will still influence the execution of this phase of the lifecycle

when an OO system is deployed.

The operations and support phase has received special consideration in the OO

approach to software engineering. Several of the essential features of OO systems, such as

inheritance, encapsulation, and polymorphism, have been designed with the intent of reducing

the costs of maintenance during this phase. Maintenance characteristically involves adapting

an information system to changing needs, and OO systems are designed to be easier to adapt

17

with lower risks of breaking existing functionality, as will be described in Section 2.9 on page

A-31.

3.2 LIFECYCLE PROGRAM STRATEGIES

DoD Directive 8120.1 and Instruction 8120.2 identify four alternative lifecycle pro-

gram strategies: grand design, incremental, evolutionary, and “other.” The first three are illus-

trated in Figure 3. More formal descriptions of the alternative strategies are given in the

following paragraphs [DOD93b].

1

1

1..n 1..n 1..n1

1..n 1..n1..n1

increment
specification

total system
specification 1

total system
specification1

Production
& Deployment

Demonstration
& Validation

Concept
Definition Development

Grand Design:

Operations
& Support

Production
& Deployment

Demonstration
& Validation

Concept
Definition

Development Operations
& Support

Incremental:

Evolutionary:

Production
& Deployment

Demonstration
& Validation

Concept
Definition Development

Operations
& Support

system
increment

1..n
1..n

1 1 11

system
increment

1..n
1..n

total
system

1
1

1..n 1..n

complete
design

Figure 3. Alternative Program Strategies for System Lifecycle

design
increment1..n 1..n

design
increment1..n 1..n

1 1

18

The grand design strategy is characterized by acquisition, development, and deploy-

ment of the total functional capability in a single increment. The required functional capability

can be clearly defined and further enhancement is not foreseen to be necessary. A grand design

program strategy is most appropriate when the user requirements are well understood, support-

ed by precedent, easily defined, and assessment of other considerations (e.g., risks, funding,

schedule, size of program, or early realization of benefits) indicates that a phased approach is

not required. In short, this strategy simply consists of a single pass through each lifecycle phase

with the total specifications of the demonstration and validation phase leading to the total sys-

tem resulting from development. The numbers on the transition lines between phases (or

between a phase and its products) in Figure 3 on page 17 indicate the number (or numbers) of

the repetition (or repetitions) at which this transition may occur (or product may be generated).

The incremental strategy is generally characterized by acquisition, development, and

deployment of functionality through a number of clearly defined system “increments” that

stand on their own. The number, size, and phasing of the “increments” required for satisfaction

of the total scope of the stated user requirement must be defined by the AIS Program Manager

(PM) in consultation with the functional user. An incremental program strategy is most appro-

priate when the user requirements are well understood and easily defined, but assessment of

other considerations (e.g., risks, funding, schedule, size of program, or early realization of ben-

efits) indicates that a phased approach is more prudent or beneficial. In short, an incremental

strategy allows for incremental development, although the total system specification must still

be completed in the first increment. The demonstration and validation phase may be repeated

under an incremental strategy, though the total system specification is not recreated.

The evolutionary strategy is generally characterized by the design, development, and

deployment of a preliminary capability that includes provisions for the evolutionary addition

of future functionality and changes, as requirements are further defined. The total functional

requirements the AIS is to meet are successively refined through feedback from previous incre-

ments and reflected in subsequent increments. Evolutionary program strategies are particularly

suited to situations where, although the general scope of the program is known and a basic core

of user functional characteristics can be defined, detailed system or functional requirements are

difficult to articulate. The evolutionary program strategy differs from the incremental program

strategy because the total functional capability is not completely defined at inception but

evolves as the system is built. In short, an evolutionary strategy allows for increments in both

the system development and its specification, as illustrated in Figure 3. When there are repeti-

19

tions of phases, their numbers and the points at which they are initiated should be presented in

the proposed program strategy resulting from the concept definition phase.

Theother strategy encompasses variations and/or combinations of the above program

strategies or other program strategies not listed, e.g., the Office of Management and Budget

(OMB) Circular-109 acquisitions, commercial-off-the-shelf (COTS) products, nondevelop-

mental item (NDI), and commercial item acquisitions. The other strategy is a catch-all for other

strategies, e.g., those involved in acquiring existing commercial or government software.

These definitions and the accompanying figure have been depicted in brief. For a full

description of these program strategies, the reader is referred to DoD Instruction 8120.2.

OOT may be incorporated into software systems fitting into any of the four program

strategies. However, many experiences building OO software indicate that a grand design strat-

egy is ill-suited for developing large-scale OO systems. Texas Instruments, for example, moved

away from the waterfall model of software development towards an iterative method with pro-

totyping at each stage in its Computer Integrated Manufacturing project with the Air Force and

the Advanced Research Projects Agency (ARPA) [TAYL92, p. 323]. Petroleum Information,

in its Graphical Information System (GIS) application framework calledSorcerer’s Apprentice,

found that rapid prototyping was more effective in applications development than writing

extensive specifications upfront as required by grand design strategies [TAYL92, p. 327].

Brooklyn Union Gas, in its customer management system, used a layered construction of object

classes with independent testing at each layer, which is another type of iterative development

[TAYL92, pp. 335-338].

The problem with a grand design strategy is that it requires completing both specifica-

tions and design during a single demonstration and validation phase prior to any implementa-

tion. The minimum required accomplishments of phase 1 in a grand design include the

following:

Detailed specifications are prepared and documented for thetotal system. The
AIS design iscomplete and based on refined functional requirements, final stan-
dards profiles, DoD standard data elements, and the AIS functional description
[DOD93b, pp. 3-9].

This is not compatible with the iterative analysis, design, and implementation that are charac-

teristic of typical successful OO projects. However, iteration may be less important for some

OO future projects if they are variations upon existing systems built by reusing existing frame-

works of class definitions designed to support that type of application. While OO frameworks

for applications development are just beginning to be introduced into the current software

20

market, they may prove to be the basis for much system development in the future. Software

development using OO frameworks may be considered a type of grand design strategy when it

completes all specifications and design prior to implementation. Under this interpretation,

grand design may still be considered a viable strategy for OO development. But using frame-

works may better be considered a distinct type of lifecycle strategy since so much of the code

exists prior to specifications and design. In any case, outside of such contexts, the current con-

sensus among OO developers is that an iterative strategy is best, if not essential, for large-

scale OO development.

Even an incremental strategy, as defined, is difficult to adopt within an iterative OO

development because it too requires the total functional capability to be specified during phase

1, whereas specifications are commonly refined throughout OO development. Since an evolu-

tionary strategy allows incremental analysis, design, and implementation, it is the best fit

among the three strategies for OO development of large-scale systems. However, the evolution-

ary strategy has been interpreted to require deploying interim software [DOD94a, p. 47], which

may not occur in many OO programs. Hence, the lifecycle of many OO programs may only fit

within the “other” category of DoD Instruction 8120.2 strategies.

3.3 OBJECT-ORIENTED DEVELOPMENT

While the previously identified program strategies offer one perspective on alternative

strategies for software programs, more specific software lifecycle alternatives for OO software

engineering have been developed that concentrate on the developmental aspects of software.

OO software development is commonly understood to include analysis, design, and implemen-

tation [RUMB91, p. 1], as they will be described shortly in this section.

However, this conception ofsoftware development, which is used throughout the rest of

this report, has a different scope than that of thedevelopment phase of the software lifecycle of

DoD Instruction 8120.2. Analysis and design are included in the common conception of OO

software development, while they are relegated to thedemonstration and validation phase for

We conclude that a “grand design” program strategy is a poor candidate for typical

large-scale OO systems because of its non-iterative lifecycle, while the DoD-defined

“incremental” strategy may be problematic because it disallows iterative development

of specifications. Thus, of the specific strategies in DoD Instruction 8120, an evolu-

tionary strategy is the best match for OO systems, although many OO programs may

best fit the “other” strategy.

21

both grand design and incremental program strategies by DoD Instruction 8120.2. The devel-

opment phase in the DoD Instruction 8120.2 lifecycle has variable content, depending on the

chosen strategy. It is devoted to coding and testing the system or current increment in grand

design and incremental strategies, respectively, though it may also include design in an evolu-

tionary strategy. However, these variations in conceptions ofdevelopment simply reflect differ-

ent uses of the term and in no way indicate any incompatibility between the DoD Instruction

and common OO conceptions of the software development lifecycle. OO development, as com-

monly conceived, will often extend across both thedemonstration and validation phaseand the

development phase of the DoD Instruction 8120.2 lifecycle. With this clarification, we may

proceed to describe characteristic features and alternatives for an OO software development

lifecycle without confusion with the broader program lifecycle discussed in Section 3.1.

Practically all OO methods endorse some degree of iteration during development. This

endorsement has grown out of the widespread project experience that object models are most

naturally constructed in an iterative fashion, since exhaustive analysis of an OO system without

the feedback of design and implementation is difficult. Typically, whole new classes, collabo-

rations, responsibilities, and class associations are discovered as analysis, design, and imple-

mentation proceed and iterate. Iteration, in this sense, simply indicates that some stages of the

development are repeated. A typical OO development model will have a main iteration loop of

analysis, design, implementation, test, and maintenance as depicted in Figure 4. Additional

iteration loops are ordinarily recommended between other phases, such as a cycle through anal-

ysis and design.

In addition to being iterative, an OO software development may be incremental, in the

sense of DoD Directive 8120, if the software products of the incremental stages “stand on their

own” enough to be deployable. Some OO software methodologies (e.g., the Booch method

[BOO94a]) recommend both interactive and incremental development in the sense of yielding

deployable increments of functionality at the completion of multiple cycles of iteration. Itera-

tion may occur without being incremental if software is not deployed or deployable between

the iterations. This may occur, for example, if iteration is confined to a cycle of analysis and

design while implementation is postponed until that cycle has fully converged. Non-incremen-

tal iteration also occurs when iteration is at a fine scale, creating increments of software that are

not complete enough for deployment.

Some OO software engineering methodologies incorporate novel lifecycle strategies

that may be considered to fit best in the “other” category of the DoD’s program lifecycle strat-

egies. The “baseball model” of the Coad-Yourdon methodology is one such example, as illus-

22

trated in Figure 5. It involves a type of concurrent development in which OO analysis, OO

design, and OO programming may all occur concurrently. Planning and control of this devel-

opment strategy are achieved by the use of “time-boxing,” wherein fixed-duration time periods

(e.g., four weeks) are identified within which a somewhat integrated set of activities in OO

analysis, OOD, and OO programming are completed. The code resulting from these periods of

development is not discarded, as it is in prototypes, but is built upon in each successive time

box until the system is complete [HUTT94, pp. 44-45]. Since there is no requirement in Coad-

Yourdon’s approach that the resulting increments should be deployable, consequently it does

not fit the incremental or evolutionary strategies of DoD Instruction 8120.2 very well.

While most other methodologies are not so insistent about concurrency in the phases of

the development lifecycle, many recognize some overlap or parallel development among them.

The Shlaer-Mellor method acknowledges that “there is typically significant overlap between

work being done on them” [HUTT94, p. 166]. In the Booch method, a micro development pro-

cess, at the level of an individual developer or small teams of developers, is identified, in which

“the traditional phases of analysis and design are intentionally blurred, and the process is under

opportunistic control” [BOO94a, p. 235]. Jacobsen’s Objectory methodology “divides devel-

OO
Test

Figure 4. Typical OO Development Iteration

OO
Design

Iterative loop

OO
Analysis

OO
Programming

OO
Maintenance

OOA

Figure 5. The Baseball Model

OOA OO analysis
OOD OO design
OOP OO programming

OOD

OOP

23

opment into processes that, unlike traditional development phases, can iterate and overlap”

[HUTT94, p. 107]. Rumbaugh’s Object Modeling Technique (OMT) allows that “some activ-

ities may be done in parallel” [HUTT94, p. 157].

Our review of OOT throughout the software lifecycle discusses the traditional stages of

analysis, design, implementation, testing, and maintenance, with a focus on the developmental

stages of analysis, design, and implementation. While OO methodologies do not take a simple

linear path through these stages, the different steps, activities, or processes prescribed by OO

methodologies can usually be clearly partitioned among them. As we proceed through each

stage, the activities from various methodologies that are associated with it will be identified and

explained. Some of these activities, such as building an object model during analysis, can be

considered essential components of any OO software development, while other activities will

be identified as optional techniques peculiar to one or more methodologies. In this way, a com-

posite picture is developed of how OOT may be applied throughout a lifecycle.

We conclude that some iteration of the traditional stages of development is a best

practice in OO software engineering, which has been found to make large soft-

ware projects more manageable.

24

25

CHAPTER 4. OBJECT-ORIENTED DEVELOPMENT ACTIVITES

OOT can be a part of nearly every activity in software development. This section dis-

cusses the use of OOT in three activities which range from requirements analysis to mainte-

nance to data management. Detailed discussions about object modeling techniques are

provided in Appendix A.

4.1 OBJECT-ORIENTED ANALYSIS

While OO methodologies have some differences in the detailed activities they prescribe

at different stages of software development, most of them distinguish the phases of analysis,

design, and implementation. For most OO methodologies, OO analysis consists of the follow-

ing activities: requirements analysis, object modeling, dynamic modeling, functional model-

ing, and risk analysis. A more detailed discussion of each activity with examples is found in

Appendix A.

• Requirements analysis. When distinguished as a separate stage of analysis,

requirements analysis is always the first one, developing the initial analysis of

requirements which provides the rationale for all subsequent analysis. Regardless

of whether a chosen OO methodology incorporates requirements analysis, it will be

required in any DoD information system development that conforms with MIL-

STD-498 [DOD94a]. While OO requirements analysis is typically couched in func-

tional terms, as with non-OO methodologies, the next stage of object modeling is

one activity that is distinctively object oriented.

• Object modeling. The essence of any OO development, object modeling identifies

and structures the objects and classes of the application domain, including their

interactions (or collaborations) and associations, such as subclassing and whole-

part decomposition.

• Dynamic modeling. Widely included in most OO methodologies, dynamic model-

ing captures the time-varying behavior of objects or classes, usually represented in

terms of state transition graphs of some type. Some such dynamic modeling is

26

essential for effective system design, though it need not be included in the analysis

stage.

• Functional modeling. Functional modeling describes the flow of information

through the system, from external inputs through operations and interactions with

data stores to output. Functional models are commonly represented by the data flow

diagrams that are central to traditional “structured analysis” methodologies. Several

OO methodologies (e.g., Rumbaugh’s OMT and the Shlaer-Mellor method) have

used data flow diagrams as one means of identifying required class operations,

while others have discarded them as being difficult to integrate with an OO perspec-

tive (e.g., Coad-Yourdon’s [CDYD91] and Booch’s [BOO94b] methods). It now

appears as though there is a movement away from using data flow diagrams in OO

development since even former advocates (e.g., Rumbaugh) have acknowledged

that they are difficult to integrate with OO models [BOO94b].

• Risk analysis. As a separate analysis activity, risk analysis receives very little atten-

tion from OO methodologies since there is nothing particularly object oriented

about it, although Booch identifies it as a potential guide to prioritizing subsequent

design activities [BOO94a].

4.2 OBJECT-ORIENTED DESIGN

The design phase in OO development transforms the idealized system models of the

analysis phase into plans for implementation, establishing a general system architecture that

includes the organization of classes into modules and subsystems, environmental fixtures and

policies, and revision of the object and dynamic models to accommodate the constraints of the

system’s architecture, environment, and policies. Although activities in OO design are orga-

nized in somewhat different ways by different OO methods, one simple division that applies

well to most methods is to be found in OMT’s distinction betweensystem design andobject

design [RUMB91]. System design includes activities that cover system-wide issues of organi-

zation and policy, while object design focuses on the detailed modeling of objects and their fea-

tures within the context of the system environment. We discuss the activities of each of these

parts of design in Sections 4.2.1 and 4.2.2, and describe how they relate to the alternative par-

titions of the design phase found in some other OO methods.

27

4.2.1 System Design

While different methodologies may emphasize different activities during system

design, they are more notable for their commonalities than their differences. One example of a

fixed set of system design activities comes from Rumbaugh’s OMT [RUMB91, pp. 198-211],

whose steps we may paraphrase as follows:

• Organize system into subsystems.

• Allocate subsystems to processors and tasks.

• Determine policy on object data management.

• Determine policy on access of other global resources.

• Determine software control policy.

• Determine trade-off priority policies (among time, space, and simplicity).

• Establish boundary condition design (initialization, termination, failure).

Other OO design methods typically include these activities, although they may not divide the

design phase up neatly between system design and object design.

Booch’s method is one example that clearly includes all of Rumbaugh’s system design

activities. The two primary products of Booch’s design phase are an architecture description

and a description of common tactical policies. His architectural description includes module

diagrams identifying the organization of the system into modules and subsystems, and process

diagrams showing the assignment of processes to processors. Thus, the first two steps in Rum-

baugh’s OMT system design process fit into Booch’s architectural planning component of

design. The remaining steps of OMT’s system design process are all covered by what Booch

calls tactical design, where the many common policies for a system are established [BOO94a,

pp. 255-257].

Booch’s approach to system design differs from OMT in its emphasis on prototyping

for design validation and its inclusion of release planning as part of design [BOO94a].

Throughout his discussion of analysis and design, Booch repeatedly advocates rapid prototyp-

ing as an aid to a variety of development activities, such as determining requirements (e.g., for

user interfaces) and validating system models and architectural designs. In all cases, care is tak-

en to emphasize that prototypes are essentially incomplete abstractions of parts of the system,

and prototype code is not intended for incorporation into the final system. Such prototyping

contrasts strongly with incremental development in which testable working code is developed

28

in increments designed to be retained (or evolved) throughout system development into the

delivery system. Most OO methodologies, including Booch’s method, recognize the proven

value of incremental development. Some, like Booch, also emphasize the value of prototyping.

In the design phase, Booch suggests using prototypes to validate the overall architecture by sat-

isfying the semantics of several key scenarios as well as to validate specific policies such as

data management or control.

Booch’s inclusion of release planning in his design phase ventures into pragmatic issues

of project management that are commonly separated from basic analysis and design in other

methods such as OMT and Jacobson’s OOSE (Object-Oriented Software Engineering). Jacob-

son, for example, devotes a separate chapter to “managing OO software engineering”

[JACO93]. Booch himself actually has a separate chapter titled “pragmatics” that is devoted to

such management issues as staffing, release management, and quality assurance [BOO94a]. So

the inclusion of release planning in his design phase may be considered just one of several

pointers he provides to essential management activities throughout his exposition of the devel-

opment process. Such pointers do not represent any real disagreements with other methods but

express an expansion of scope to include some management issues as well as technical ones.

Some disagreement exists between different methodologies on the extent to which the

specifics of the implementation environment ought to be considered during the design phase.

Rumbaugh maintains that design should

. . . make the decisions that are necessary to realize a system without descending
into the particular details of an individual language or database system
[RUMB91, p. 263].

Jacobson, in contrast, clearly includes the effects of these details of the implementation envi-

ronment in his design phase when he maintains

The design model will further refine the analysis model in the light of the actual
implementation environment. Here . . . we will decide how different issues such
as DBMSs, programming language features and distribution will be handled.”
[JACO93, pp. 204-205]

Other methodologies, such as Booch’s method, are not so clear about the extent to which the

implementation environment should influence design. In any case, it is clear that many envi-

ronment-dependent policies about object implementation will be required before coding can

proceed. Whether this policy making is labeled as part of design or of implementation matters

little, especially within an OO development context where the activities of different phases

overlap and the whole process is iterative.

29

4.2.2 Object Design

Object design may be described as being composed of those design activities that

directly elaborate the plans for implementing the components of the object model, including its

class structure, operations, attributes, and associations. Object design may be distinguished

from system design by its focus on elaborating the design of individual classes, objects, and

their features, whereas system design addresses system-wide issues of organization and policy.

Object design is distinguished from implementation by the absence of coding which is the prin-

cipal activity in the next development phase of implementation (or programming). An excep-

tion to the exclusion of coding from the design phase occurs when prototypes are used to

validate design plans. Coding that is implemented for prototypes may be considered part of

design, provided it is not incorporated into the actual system. Otherwise, when coding for val-

idation of design is retained for the delivered system, it is best categorized as part of the imple-

mentation phase which may, of course, be interleaved with design in an OO development.

One of the most explicit lists of object design activities is found in Rumbaugh’s OMT,

which includes the following ordered steps:

• Settle assignment of operations to classes.

• Design algorithms to implement operations.

• Optimize access paths to data.

• Design control strategy.

• Adjust inheritance hierarchy.

• Design associations.

• Determine object representations.

• Package classes and associations into modules.

While these steps fairly represent most of the class-specific steps required to prepare for the

transition from an analysis model to actual code, there is some disagreement among the differ-

ent methods on whether all these activities should be assigned to the design phase. Algorithm

design, for example, is included the implementation phase of Booch’s “micro-development

process.” He describes both the “selection” and decomposition of algorithms (when neces-

sary) as part of implementation [BOO94a, pp. 247-248]. Most of the other OMT object design

activities are just refinements of the object model that are commonly included in design.

30

Jacobson departs from OMT and from many other methodologies by delaying until his

design phase the initiation of several dynamic modeling activities which others incorporate into

analysis, including the following [JACO93]:

• Creation of object interaction diagrams.

• Creation of state transition diagrams.

Jacobson creates a design model based on blocks which are logical-level design objects con-

sisting of one or several classes/objects derived from his analysis model. His design model is

composed of the following:

• Block structure diagrams - based upon the analysis object model, modified to

accommodate implementation policies and constraints.

• Interaction diagrams - based upon blocks.

• State transition diagrams - for blocks with nontrivial dynamic behavior.

These diagrams are essentially the same as those used by other methodologies during analysis

except that the models are further refined to accommodate implementation. Other methodolo-

gies, such as OMT, the Shlaer-Mellor method, and the Booch method, that develop dynamic

models during analysis prescribe comparable refinements on them during design. Thus, there

is very little difference between Jacobson and these other methodologies on what dynamic

models are developed, though they assign comparable activities to different development

phases.1 Jacobson is distinctive in his emphasis on switching from the objects/classes of anal-

ysis to blocks during design. But this is arguably a negligible difference since blocks are ini-

tially mapped one-to-one to objects/classes from his analysis model, and their subsequent

evolution is comparable with the evolution that the analysis model makes during design in

other methods.

4.3 OBJECT-ORIENTED PROGRAMMING

OO programming is the software development phase where the system models are

transformed into actual code in a programming language. When OO analysis and design are

thoroughly executed using OO techniques like those discussed in Sections 4.1 and 4.2, coding

should be relatively straightforward, consisting principally of translating the object model into

code. However, substantial latitude for alternative implementations always exists in such trans-

1 There are substantive differences in functional modeling, however, as noted in Appendix A’s section on
functional modeling (Section A.4 on page 48).

31

lations. The central task of the OO programming phase of software development is the deter-

mination of which among the many alternative encodings of an OO design model will actually

be implemented. Depending on the programming language used, even the basic implementa-

tion of classes, their attributes, and their operations may admit many alternatives. Such alter-

natives are minimal within strictly OO languages like Smalltalk, increase in languages with

fewer built-in OO features, such as Ada 83, and are maximal in languages with no predefined

OO features, such as Fortran.

When implementing an OO system, it is most natural to use a fully object-oriented pro-

gramming language. However, some DoD information systems are committed to using the Ada

programming language whose fully object-oriented version (Ada 95) lacks validated compilers

at this writing. Thus, DoD information systems programmed using validated Ada compilers

will be constrained to use Ada 83 for a while longer. However, this language admits a wide vari-

ety of different implementations of class structures and their features.

In a companion report on OO programming strategies for Ada [IDA95b], we examine

the principal implementation choices in translating an OO design into an implementation in

Ada. Alternative strategies for implementing class hierarchies, inheritance, polymorphism, and

associations are described for projects using Ada 83. In addition, we look ahead to the time

when Ada 95 will be available in validated compilers and describe the intended usage of its new

features for implementing OO systems.

4.4 OBJECT REPOSITORIES

Repositories of object classes, their methods, and their instances participate at both

ends of the software development cycle. In the analysis and design phases, a pre-existing object

repository may provide actual class and object definitions for an application domain. During

the implementation phase, the repository implementation code may then provide the corre-

sponding actual code, supplemented by additional attributes or operations in specializations as

needed. At the completion of testing, selected new or modified object classes may be submitted

to the object repository for subsequent reuse.

Some methodologies offer guidance on designing classes to optimize their reuse poten-

tial. Rumbaugh’s OMT, for example, includes the following recommendations for enhancing

reusability [RUMB91, pp. 282-283]:

• Keep methods coherent (with a focused functionality).

• Keep methods small (break-up large methods).

32

• Keep methods consistent (e.g, in argument types between methods).

• Separate policy and implementation methods.

• Generalize methods (cover all relevant conditions).

Separate guidelines have also been provided for enhancing extensibility and robustness of

classes, which naturally aid reusability as well. These guidelines include the following

[RUMB91, pp. 285-288]:

• Encapsulate classes and data structures.

• Avoid traversing multi-link association paths (from a single method).

• Avoid nested method calls (calling one method with result of another).

• Distinguish public and private operations, attributes, and associations.

• Validate arguments.

• Protect against errors (handle application and system errors gracefully).

• Avoid predefined limits.

Other suggestions on preparing OO software for reuse are found in Jacobson’s chapter on

components which could be individual classes or frameworks of many classes [JACO93, pp.

289-312]. Such guidelines can aid the development of object repositories with greater reuse

potential that substantially reduces the time and costs of subsequent OO development efforts.

4.5 OBJECT-ORIENTED TESTING

Until recently, testing was one phase of software development that had received little

attention from OO methodologists. Most of the OO methodology books, such as [BOO94a] and

[RUMB91], do not even address testing methodology.

A brief but informative overview of issues in OO testing can be found in the following

materials:

• [BARB94] Barbey, S., M. Ammann, and A. Strohmeier,Open Issues in Testing

Object-Oriented Software, Technical Report No. 94/45. Departement D’Informa-

tique, Swiss Federal Institute of Technology—Lausanne, Switzerland, 1994.

A good collection of articles on OO software testing can be found in a special issue of

Communications of the ACM on this topic from September 1994. This collection consists of the

following articles in order of appearance:

33

• [JORG94] Jorgensen, P. C. and C. Erickson, “Object-Oriented Integration Testing,”

Communications of the ACM, Vol. 37, No. 9, September 1994.

• [BIND94a] Binder, R. V., “Object-Oriented Software Testing: Introduction,”Com-

munications of the ACM, Vol. 37, No. 9, September 1994.

• [MRPH94] Murphy, G. C., P. Townsend, and P. S. Wong, “Experiences With Clus-

ter and Class Testing,”Communications of the ACM, Vol. 37, No. 9, September

1994.

• [PSTN94] Poston, R. M., “Automated Testing from Object Models,” Communica-

tions of the ACM, Vol. 37, No. 9, September 1994.

• [MCGR94] McGregor, J. D. and T. D. Korson, “Integrating Object-Oriented Test-

ing and Development Processes,”Communications of the ACM, Vol. 37, No. 9, Sep-

tember 1994.

• [ARNL94] Arnold, T. R. and W. A. Fuson, “Testing ‘In A Perfect World’,”Commu-

nications of the ACM, Vol. 37, No. 9, September 1994.

• [BIND94b] Binder, R. V., “Design for Testability in Object-Oriented Systems,”

Communications of the ACM, Vol. 37, No. 9, September 1994.

In addition, papers on OO testing have appeared in theJournal of Object-Oriented Pro-

gramming and in the published proceedings of the annual conferences on Object-Oriented Pro-

gramming Systems, Languages, and Applications (OOPSLA).

4.6 OBJECT-ORIENTED MAINTENANCE

The modularity of OO technology is designed to minimize disruptions to software sys-

tems due to routine software maintenance required by bug fixes, updates, and extensions. The

encapsulation of internal data structures characteristic of OO systems, in particular, reduces the

risks of change propagation wherein a minor change in one part of a system propagates

throughout the entire system, requiring many changes in other subsystems related by chains of

interaction. Updates and extensions to the attributes and operations of a class can be made with-

out any disruption to the original class definition by the creation of a new subclass inheriting

the original’s features and supplementing them with any new features that may be required.

Polymorphism allows existing calls to object services to automatically access the new or

refined services of new subclasses simply by using the same name for the revised services in

the new class. In contrast, conventional programming techniques require modifying case state-

ments for every new variation on a service.

34

4.7 OBJECT DATA MANAGEMENT

This section discusses databases and files in the framework of OOT. No matter what

technology is used to build an AIS, some of the AIS data must be “persistent”—it should exist

beyond a single execution of a program. Furthermore, the persistent data of an application

should be usable by more than one program; programs running concurrently should be able to

read and write the data in a way that is safe and does not cause interference; and the data should

also be recoverable in the event of a system failure.

Support for persistent data can be provided by the use of files and code implemented in

the application programs. It is also possible that the file system component of an operating sys-

tem could provide some of the desired functionality (for example, control of concurrent

access). However, in most systems built over the last few years, the management of persistent

data is performed by a database management system (DBMS). The most popular DBMS prod-

ucts at this time are relational database management systems (RDBMSs). However, as OOT

becomes more popular, new database products are emerging which are either based on objects

or are incorporating objects. These products are either object-oriented database management

systems (OODBMSs), or object-relational database management systems (ORDBMSs). The

latter are RDBMSs extended to incorporate ideas from OOT.

4.7.1 Object-Oriented Database Technology

At this time there is still no firm agreement on what constitutes an OODBMS. Relation-

al systems are based upon a fairly simple mathematical model, and the evolution of these sys-

tems has been overseen by the founder of the model, E. F. Codd. Such a focal point may just

be emerging in the OODBMS arena. R. G. G. Cattell is the author of one of the most respected

books on OODBMS,Object Data Management: Object-Oriented and Extended Relational

Database Systems [CATT94]. Cattell is also the chair of a committee, the Object Data Manage-

ment Group (ODMG),2 that is trying to establish a standard for what he calls “object data man-

agement” (ODM). ODMG has recently published The Object Database Standard: ODMG-93

[CATT93]. The standard presents a framework for defining and querying objects, and for inter-

facing with OO programming languages. The committee is composed of representatives of

many of the major commercial OODBMS vendors, and a number of these are committed to

2 Not affiliated with the Object Management Group (OMG); however, the ODMG expects to submit its standard
to OMG, the American National Standards Institute (ANSI), and other standards groups. OMG is responsible
for the Object Request Broker (ORB), also known as Common Object Request Broker Architecture or CORBA.
ORB is a communications specification to promote integration and sharing of objects, including persistent
objects.

35

supporting ODMG-93 by early CY1995. Cattell’s book on object data management [CATT94]

contains a chapter that is an overview of the ODMG work.

An OODBMS, in order to claim the title, should have at least some of the following

attributes.3

a. To be considered object oriented, it should provide the following:

1. Abstract data types - the ability to define classes of objects that have associated

“instance data” and operations (methods). The instance data of these objects

may have a complex structure and may define relationships between objects.

2. A class hierarchy and some form of inheritance.

3. Communication among objects (messages).

4. Object identification - an object should have a permanent identifier that does not

change as long as the object exists, no matter how the state of the object chang-

es.

b. To be considered a DBMS, it should provide the following:

1. Transactions - support for consistent, conflict free, and durable updating and

viewing of the object values. Durable updates mean that in the event of a system

failure, it must be possible to restore the database to its most recent consistent

state before the failure occurred.

2. Persistence - the ability for objects to have a life span longer than the execution

of an application program.

The DBMS requirements are minimal. To be truly useful, a DBMS should provide utility pro-

grams to support browsing and updating the database, a non-procedural query language, an op-

timizer so that non-procedural queries can be performed efficiently, an application program

interface (API), as well as tools for database design, tuning, administration, and application

generation and report writing.

There are now at least 10 commercial DBMS products on the market that can claim to

be object oriented, based upon the attributes listed previously. In addition, a number of relation-

al systems are planning on providing some aspects of object orientation, and some new prod-

ucts are being created that are called “object relational.” SQL [ANSI92], the standard relational

3 See [LOOM95] for a similar discussion presented from both a programmer and database perspective. Loomis’s
point is that object orientation blurs the lines between programs and databases.

36

data language, is evolving to support object orientation. SQL3 will provide abstract data types,

and a later SQL standard is expected to define an even more object-oriented data language.

RDBMS vendors can be expected to stay ahead of the standards effort if they perceive provid-

ing object orientation as important in order to stay competitive with OODBMS vendors.

4.7.2 Storage of Objects

In the best of all worlds, it would be possible for a programmer to implement a program

that operates on objects without regard to whether they are persistent or not. However, since a

great deal of the data manipulated in a program does not need to be persistent, this would place

needless demands on an OODBMS. The next best possibility is for a programmer to be able to

declare objects to be of a certain class and optionally to be persistent. These objects will be

maintained by code that manages persistent data, but the programmer will be able to reference

objects in a uniform way without regard to whether or not they are persistent. In this section we

describe technical issues related to providing such a capability.

Generally speaking, users should not have to be aware of how data is physically stored

in a database whether it is relational, object oriented, or some other model. Access to the data

should be provided by an API. It should be possible for the DBMS vendor to change the way

data is stored and, as long as the semantics of the API are preserved, users should not be affect-

ed. This is known as “physical data independence.” In reality, (sophisticated) users are often

required to be aware of some aspects of data storage in order to be able to better manage space

utilization and performance.

OODBMS systems must maintain the instance data for each object. However, an object

class is usually composed of instance data and methods, code that implements operations on

the object. The OODBMS may or may not maintain the method “code” associated with an

object. Some OODBMSs simply provide database services for managing the instance data. The

method code is implemented in the application programs. In other OODBMSs, it is possible to

define a persistent class that is composed of the instance data and methods. Maintaining the

method code separately from the DBMS has the advantage that the methods are implemented

in the same syntax as the application program, but the disadvantage that methods are separated

from their associated data. That is, some aspects of an object are in one place and some in

another (the database and the application program). In the case where the methods are managed

by the DBMS, these advantages and disadvantages are reversed. This scheme, however, can

also provide significant performance benefits since more complex processing can be performed

by the database management system. This is especially valuable in a client-server environment

37

since it allows the application to off-load some processing on to the server and also cuts down

on the amount of message traffic that must occur between the client and server.

The OODBMS may need to maintain additional information (for example, indexes) in

order to support faster retrieval, scanning of a class of objects, and relationships4 (IS-A, PART-

OF, and user-defined relationships).

One of the major application areas perceived for OODBMSs is supporting applications

involving complex objects, for example, computer-assisted design (CAD), computer-aided

software engineering (CASE), scientific computing, and geographical information systems

(GISs). In these applications, the instance data associated with an object can be quite complex

(objects are frequently composed of other objects). There are basically two ways to store such

an object, as a unit or in pieces with references connecting the pieces. If an object is stored as

a unit, then a minimal number of disk accesses are necessary to retrieve it. The unit may be an

image of a programming language object, or it may have a structure defined by the DBMS.

If an object is quite large, storing it as a unit might mean a number of database pages

must be read even though only a small part of the object is being read or modified. If an object

is in pieces, then a “lazy” approach can be used to access it. That is, a piece will be found and

read only when that piece is referenced. The disadvantage of this scheme is that when the entire

object is needed, it must be assembled. A considerable amount of processing could be neces-

sary in order to support references to the object. OODBMS research is currently being directed

at designing data structures and algorithms that will speed up this type of processing.

These two schemes (storing as units or storing in parts) can be simulated by an

RDBMS, but this is an area where the RDBMS can yield poor performance. True OODBMSs

try to store the parts of an object together so that a small number of disk accesses will be able

to retrieve the entire object. In relational systems where data has been normalized, just the

opposite effect is achieved. The components of an object are logically (and almost always phys-

ically) separated into tables so that in order to retrieve the entire object, it is necessary to per-

form a complex join or to use multiple queries.

An RDBMS can store an image of a programming language object using a BLOB

(binary large object). A BLOB is a relational data type that is generally uninterpreted by the

4 Loomis [LOOM95] refers to relationships such as IS-A and PART-OF as “containment” relationships. These
should be stored directly by the OODBMS (as opposed to being symbolic and requiring a join as in relational
systems).

38

RDBMS. That is, the RDBMS supports storage and retrieval of a BLOB but does not support

other types of processing (queries, transformations, or updates except for replacement).

There are disadvantages to this image storage technique: the DBMS is tied tightly to a

particular programming language, or is much less efficient when used by other programming

languages. Since the OODBMS community seems to be focused on C++ and SmallTalk, this

may not be perceived as a serious commercial problem. However, if the OODBMS community

wants to be embraced by new types of users, they may need to address the problem of interfac-

ing with a variety of programming languages. In particular, Ada users might prefer to use an

OODBMS that is “language neutral” if they cannot get one that is Ada oriented. It is possible

that the solution to language neutrality will be provided in the OMG’s ORB context. This spec-

ification attempts to define a mapping between a general type structure and a particular imple-

mentation’s representation. If OODBMS and RDBMS vendors participate in an ORB-based

environment, then participating applications will not have to be concerned about a particular

DBMS’s representation of objects.

A-1

 APPENDIX A.
OBJECT-ORIENTED ANALYSIS ACTIVITIES

A.1 REQUIREMENTS ANALYSIS

Requirements analysis has been described as “the process of determining what the

customer wants a system to do” [HUTT94, p. 10]. When the customers and their wants are

construed broadly enough, this provides as fair a definition of requirements analysis for OO

software systems as for any other sort of systems engineering. Software requirements anal-

ysis need not differ much between object-oriented software systems and more traditional

software systems since analysis of classes and objects, the distinctive features of OO sys-

tems, may be postponed until the object modeling stage. Even OO requirements analysis is

predominantly functional in nature, consisting primarily of a determination of the essential

functions that the system must perform, sometimes represented in terms of scenarios or

“use cases” as described in Section A.1.3 on page A-3.

The attention given to requirements analysis, as a separate aspect of analysis, varies

widely between different OO methodologies, from being assumed as background to being

decomposed into detailed steps and operations. Some methodologies, such as Objectory, go

into considerable detail on methods for eliciting systems requirements from users and other

application domain authorities. Other methodologies, such as Wirfs-Brock’s, assume that a

detailed requirements specification exists and base exploratory analysis on the extraction of

information from that specification [HUTT94, p. 192]. Other methodologies, such as the

Schlaer-Mellor method [HUTT94, pp. 165-176] and Coad-Yourdon’s Object-Oriented

Analysis (OOA) [CDYD91], do not distinguish a separate requirements analysis process,

beginning the analysis phase with domain analysis and object model building.

A brief list can identify most of the basic activities proposed by different OO meth-

odologies for requirements analysis:

• Problem and requirements statement acquisition.

• Users and domain experts’ interviews.

• Use case model (or scenario) development.

A-2

• Interface development.

• Preliminary domain object model building.

• Prototype development for proof of concept.

• Customer sign-off on requirements models.

Each of these activities is described briefly in the following sections. Only the first and last

are required for every program. Obviously, some problem or requirements must exist for

there to be any goal for a software development program. In addition, customer sign-off

exists as a requirement of milestone review at the end of phases 0 and 1 of the AIS lifecy-

cle in DoD Instruction 8120.2, insofar as the AIS milestone decision authority (MDA) is

seen as a customer. Additional sign-off by end-user customers is an optional step that may

further confirm the validity of requirements models. Some analysis of user input is also

required as part of any requirements analysis performed under MIL-STD-498, though it

does not mandate any specific form of input, allowing that

This input may take the form of need statements, surveys, problem/change
reports, feedback on prototypes, interviews, or other user input or feedback.
[DOD94a, p. 14].

The optional activities may all contribute to satisfying this requirement, provided

they involve the users.

A.1.1 Problem or Requirements Statement

Requirements analysis begins, in most OO methodologies, with some statement of

the requirements. In its simplest form, this may be a statement of a problem to be solved by

the system, with little or no information on what is required to solve that problem (e.g.,

“process payroll,” “manage officer assignments,” “manage materiel inventory”). Ram-

baugh’s OMT begins from this minimal basis with the first step of “writing or obtaining the

problem statement” [HUTT94, p. 156]. Given some statement of the problem or basic

requirements, analysis at this stage proceeds to expand on it to establish the required func-

tional behaviors of the system.

While most of these requirements analysis activities are optional, all are recom-

mended. All the optional activities have proven effective in elaborating require-

ments and confirming them with the customer, although not all are needed in

every program.

A-3

While most OO methodologies focus onnew development, much of the current

DoD AIS development involvesmigration of legacy systems, and the original written

requirements are often no longer available for these systems. For some such projects, the

best initial statement of requirements may simply describe the problem of reengineering the

legacy system to reproduce its functionality within specified constraints, including modern-

ized hardware, software, and engineering practices. In other cases, the requirements for a

migration system may include new capabilities or merged capabilities from other systems

in addition to modernization of a legacy system. Most basic OO requirements analysis pro-

cesses will still be applicable to these projects, although they will benefit from supplemen-

tation with techniques and tools that are explicitly designed for reengineering, and possibly

reverse engineering, of legacy software. This issue and others pertaining to software reengi-

neering are treated in a companion report on reengineering systems strategies [IDA95d].

Here, we review only those requirements analysis activities that are of general applicability.

When reverse engineering is required to help establish requirements, it may accompany or

precede the ordinary requirements analysis activities.

A.1.2 User and Domain Expert Interviews

After some statement of the system problem or requirements is obtained, many

methodologies prescribe some type of analysis of required system functionality. Such inter-

views may focus on eliciting or elaborating statements of needs, or they may engage the

domain experts in more formal analysis activities such as “use case” analysis, user interface

design, or prototype evaluation, as described in the next sections.

A.1.3 Use-Case Model Development

The development of “use case” scenarios in requirements analysis, as pioneered by

Ivars Jacobson [JACO93], forms the foundation for all subsequent analysis and design in

the Objectory method [HUTT94, pp. 107-117]. Recently, this technique has also been rec-

ommended by Grady Booch for both requirements analysis and for class object identifica-

tion during domain analysis [BOO94a]. Rumbaugh’s OMT advocates a very similar

technique focusing on analysis of typical user dialogues calledscenarios [RUMB91]. At

this point, we focus on Jacobsen’s use case analysis because it is the most detailed and

Interviews with users and other experts on the system’s domain and intended opera-

tions are widely recommended as one means of determining and elaborating the sys-

tem requirements.

A-4

because he clearly places it in the requirements analysis phase, while Rumbaugh does not.

The closely related activity of scenario analysis in OMT is discussed in Section A.3 on page

A-40, the discussion on dynamic modeling, reflecting its place within the OMT methodol-

ogy.

A use case is a behaviorally related sequence of transactions in which an external

actor (a person or a machine) engages in a dialogue with the system [HUTT94, p. 109]. Use

cases are intended to capture the functionality of the system as seen externally from the

viewpoint of the users that will interact with it. The development of use cases is usually iter-

ative and should involve the users or domain experts interacting with software developers.

Subsequent domain analysis can then utilize the use case scenarios as sources of essential

objects, classes, and their interactions.

Jacobson composesuse case models from a set of actors and the use cases in which

they participate. A diagramming technique is used for representing the actors (outside the

system) and their relations to the use cases, as partially illustrated for his example of a ware-

house management system in Figure A-6 [JACO93]. The system is represented by a labeled

box containing ellipses representing the use cases of the system, and surrounded by the

actors external to the system connected by arcs to the use cases with which they are

involved. Actors represent classes of individuals that are distinguished by the different roles

Office
personnel

Truck
driver

Forklift
operator

Warehouse
worker

Redistribution
between warehouses

Customer withdrawal
from a warehouse

Redistribution within
a warehouse

Figure A-1. Illustration of a Use Case ModelSource: [Jaco93]

Warehouse Management System

A-5

they play within the system. Actor roles are most commonly filled by persons, although oth-

er agents, such as external computer programs or system, may also play the role of actors.

There is a many-to-many relation between actor classes and the individuals that may play

their roles, i.e., a single individual can perform the roles of multiple actor classes, and many

individuals and different kinds of individuals (e.g., human, software) can often take the

same actor role.

A use case is specified by a description of its related flow of events in the order in

which they occur. The different steps or events may be numbered (at multiple levels),

domain object terms may be italicized, and alternative courses of events in the same use

case may be separately identified at the end of the most common or default course. An

example adapted from [JACO93] for the “customer withdrawal” use case of the warehouse

management system example is shown in Figure A-2.

(1) Theoffice personnelinserts a request for a customer withdrawal at a certain date and a cer-
tain warehouse.

(2) The information filled in by theoffice personnel is customer, delivery date, and delivery
place. Theoffice personnelperson selects items from the browser and adds the quantity to
be withdrawn from the warehouses. The browser can here show only the items of the current
customer to the office personnel.

(3) The following criteria are checked instantly:

a. The customer is registered,

b. The number of items ordered exists in some warehouses,

c. The customer has the right to withdraw the items.

(4) The system initiates a plan to have the items at the appropriate warehouse at the given date.
If necessary, transport requests are issued. The items are reserved three days in advance.

(5) At the date of delivery awarehouse worker is notified of the withdrawal.

(6) Thewarehouse worker issues requests to theforklift operatorto get the items to the loading
platform. Theforklift operator executes the transportation.

(7) When the customer has fetched his items, thewarehouse workermarks the withdrawal as
ready. The items are removed (decreased) from the system.

Alternative courses:

There are not enough items in the warehouses.
 The office personnel is notified and the withdrawal cannot be executed.

The customer has no right to withdraw an item or the customer is not registered.
 Notify theoffice personnel. The withdrawal cannot be executed.

Figure A-2. Customer Withdrawal Use Case

A-6

Commonalities may be abstracted from multiple use cases to create abstract use

cases which can be referenced by those use cases sharing their activity sequences, thereby

reducing duplication. But to avoid proliferation of use cases and keep the use case model

simple, it is important to ensure that every use case, including abstracted ones, constitutes

a complete logical sequence of events.

Use cases may be integrated with interface descriptions to better describe the

actions taken by actors interacting with the system. These interface descriptions may be lin-

guistic, graphical, or even implemented as a graphical user interface (GUI) prototype, as

discussed in Section A.1.4 and Section A.1.6. Use cases may be further elaborated by a

domain object model that begins to structure the objects referenced by the use cases, as dis-

cussed in Section A.1.5.

A.1.4 Interface Description Development

During interviews or analysis meetings with users and domain experts, the intended

interactions between actors and the system in a use case may be clarified by use of user

interface descriptions [JACO93]. These may be simple static sketches of screen displays,

dynamic interface mock-ups, or actual front-ends to functioning prototypes. Jacobson

emphasizes that such interface descriptions are best developed after the basic correspond-

ing use case, to avoid forcing the use cases to fit some interface design preconceptions.

Other system interfaces, such as communications protocols and standards, may also be

described at this stage

A.1.5 Preliminary Domain Object Model

While most OO methodologies do not give any explicit attention to the domain

model during requirements analysis, at least one approach (Objectory) recommends devel-

Use case (or scenario) analysis is increasingly recognized as a valuable tool for

many aspects of development, including object modeling, dynamic modeling,

and testing, as well as requirements analysis. It may be considered a best prac-

tice, though it is not incorporated in all OO methodologies.

Interface descriptions greatly facilitate effective communication on expected

functionality between developers and customers. While highly recommended,

they are not essential for every interface or every program.

A-7

oping a “domain object model” during this phase. This domain object model is intended to

lay the initial foundations for a logical view of the system in terms of application domain

objects. It can help define the concepts used in the use cases or other scenarios, and it can

provide the structure for any prototype that may be developed at this stage. A possible

domain model in Jacobson’s notation for the warehouse management system example

[JACO93] is illustrated in Figure A-3. The circles represent classes whose names appear on

the labels beneath them and whose relations to other classes are indicated by labeled

directed links between the class icons. The arcs, as usual in object models, represent asso-

ciations between different types of objects. An annotation of “ihs” on an association arc

indicates the inheritance association. One technique to aid building this sort of model, rec-

ommended in [JACO93], begins with free-form sketches by users and/or domain experts of

their views of the system, followed by discussions designed to elicit the basic domain

objects underlying those views.

In Jacobson’s Object-Oriented Software Engineering (OOSE) and in Objectory, this

optional preliminary model is superseded in the next phase of development by a new object

model, therobustness model. The preliminary domain object model is deliberately limited

in scope just to provide any necessary clarification of the use cases. It is typically limited

Figure A-3. Preliminary Domain Model for a Warehouse System

gives_a [0...N]

stored_at [0...N]

owns [0...N]

places [0...N]

Customer

Order

Item Forklift Truck

Transporter

WarehouseWarehouse
place

ihs ihs

Class_1 Class_2

association

Key
Class_1 has association with

Class_2:

Source: [JACO93]

A-8

to object names, attributes, and static associations, excluding object methods and responsi-

bilities and dynamic associations. The intent is to avoid premature commitments to classes

and to ensure that the final domain model is robust and benefits from a thorough analysis.

A.1.6 Prototype Development

Prototypes developed during requirements analysis can serve a variety of purposes:

training in OO concepts and development, clarification of an original vision of intended

system functionality, concrete illustration of system concepts for eliciting user or customer

feedback, proof of viability of certain system concepts, or even creation of a sales tool for

promoting the system with potential customers or sponsors. Prototypes are, by nature, lim-

ited in scope, being incomplete implementations of selected aspects of the target applica-

tion. They may focus on the user interface in order to support elicitation of user feedback

on basic functionality from an operator’s perspective, or they may focus on identified risk

areas, such as specialized algorithms or processes, in order to test elements of the system

that are perceived to carry substantial risk. Prototypes can serve these purposes at the same

time that they are providing training in OO concepts and techniques for members of a

development team that are transitioning to OOT from other software development para-

digms.

Prototypes are intended to be quickly implemented, and the choice of a suitable pro-

totyping environment may be crucial to this goal. The OO programming language Small-

talk, with its extensive object libraries and development environment, is often cited as an

effective prototyping tool, even for projects whose target implementation language is dif-

ferent [TAYL92]. Especially effective for such rapid prototyping are the latest visual, parts-

oriented environments built on top of Smalltalk, such as IBM’sVisual Age, Digitalk’sParts,

and Parc Place’sVisual Works. Other languages or tools may prove comparably effective,

provided they are adequately supported with object libraries, GUI tools, and an environ-

ment designed for rapid prototyping. Regardless of the language or environment used, it has

been observed that an OO approach has advantages in rapid prototyping over function-

based software development since the object classes and methods of an OO prototype may

easily be a subset of the classes and methods of the full application, while a function-based

Building a preliminary domain model during requirements analysis is optional

even in Jacobson’s method. Its use should be determined by the needs and inter-

ests of the developers during this stage.

A-9

decomposition suitable for a prototype may well be inappropriate for the full application

[RUMB91, p. 145].

Several methodologies identify the benefits of prototyping, and personnel in a wide

variety of specific OO projects have expressed satisfaction with early rapid OO prototypes

for pedagogical purposes as well as system analysis [TAY92]. Booch goes so far as to iden-

tify prototypes as the primary products of the requirements analysis (or conceptualization)

phase [BOO94a, p. 250]. Regardless of the methodology employed, early prototyping has

much to recommend it in OO systems development.

A.1.7 Requirements Analysis Deliverables

Deliverables to be generated or updated by the end of each iteration of OO require-

ments analysis may include the following:

• Requirements specification

• Use case models or scenarios

• “Domain model” (An initial model of objects representing domain entities is

an optional part of requirements model for some methods, e.g., Objectory.)

• Interface descriptions

• Prototypes

A requirements specification may include all of the other deliverables, or only a subset of

them, depending upon which activities were undertaken during this phase.

When an information system is developed in accord with MIL-STD-498, the

requirements deliverables must be provided in a form that includes all applicable items in

the System/Subsystem Specification (SSS) Data Item Description (DID), DI-IPSC-81431

[DOD94a, DOD94b]. The requirements items for this specification are as follows:

3.1 Required states and modes

3.2 System capability requirements [including functions, subjects, and/or objects]

Prototyping is highly recommended throughout the OO development process, espe-

cially during requirements analysis. It is identified as an option for all program

strategies during the entire lifecycle management process by DoD Instruction

8120.2.

A-10

3.3 System external interface requirements

3.4 System internal interface requirements

3.5 System internal data requirements

3.6 Adaptation requirements

3.7 Safety requirements

3.8 Security and privacy requirements

3.9 System environment requirements

3.10 Computer resource requirements

3.10.1 Computer hardware requirements

3.10.2 Computer hardware resource utilization requirements

3.10.3 Computer software requirements

3.10.4 Computer communications requirements

3.11 System quality factors

3.12 Design and construction constraints

3.13 Personnel-related requirements

3.14 Training-related requirements

3.15 Logistics-related requirements

3.16 Other requirements

3.17 Packaging requirements

3.18 Precedence and criticality of requirements

The products of OO software requirements analysis fit under requirements item 3.2, Sys-

tem capability requirements.

Like other MIL-STD-498 requirements, this formal deliverable need not be com-

pleted in either a single build or prior to the traditionally subsequent activities of software

design, implementation, and testing. Regarding required development activities, this stan-

dard allows the following:

A-11

Many of the activities may be ongoing at one time: different software prod-
ucts may proceed at different paces; and activities specified in early subsec-
tions may depend on input from activities in later subsections [DOD94a].

Thus, it is quite compatible with the iterative style suited to OO development. More

specifically, the SSS DID requirements analysis deliverable may not be complete until

after multiple iterations of the development cycle. Parts of the SSS DID requirements will

also depend on the input of other OO development stages. Many computer resource

requirements, for example, are ordinarily not determined during OO development until

design. OO analysis typically proceeds without concern for the details of the specific hard-

ware and software environment, such as the operating systems or programming languages

used.

A-12

A.2 OBJECT MODELING

A.2.1 General Features

Definitions

Object modeling focuses upon development of a model of the classes and objects in

the application domain, their attributes, associations, hierarchies, responsibilities, and col-

laborators. “Object modeling” is both a generic term for these activities and the name of

one stage of OO analysis in Rumbaugh’s OMT methodology. Other methodologies com-

monly use a different term to mean the same thing, as Objectory uses “robustness analysis”

to emphasize its function of “finding a robust and extensible structure for the system as a

basis for construction” [HUTT94, pp. 112-113]. In the Shlaer-Mellor method, object mod-

eling is a part of “application domain analysis” and contrasted to other “service domain”

analyses, where the activities of the latter are often associated with the design phase in other

methodologies [HUTT94, pp. 166-170]. The Wirfs-Brock Responsibility-Driven Design

method divides into two stages. The first, an “exploratory” stage (identifying classes,

responsibilities, and collaborators), is included in what we call object modeling. The sub-

sequent “analysis” stage includes some object modeling activity (establishing hierarchies),

as well as other activities (establishing subsystems and protocols) that may better be includ-

ed in a design phase [HUTT94, pp. 192-193]. Coad and Yourdon have little to say about

requirements analysis and their whole analysis phase corresponds to what we are calling

object modeling [CDYD91].

Diagram Notation

The models developed during object modeling are most commonly represented by

diagrams, although they might also be described by natural language text or a data dictio-

nary. In fact, object modeling tools typically support both diagrams and a corresponding

data dictionary. Object models are static views of classes, objects, their attributes, respon-

sibilities, associations, hierarchies, and (under some methods) collaborators. Classes and

objects are represented by different types of annotated icons in the diagrams of different

methodologies. Class icons from some of the more popular methodologies are illustrated

in Figure A-4. Most diagrams of object models include the names of the attributes and the

operations, methods, and services of a class within the class icon in order to identify its

principal distinguishing features. Jacobson is an exception to this rule in drawing his

attributes as links connected to the types of their arguments [JACO93], keeping the basic

class icon fairly simple. The attribute and operation designations in other class icons, how-

A-13

ever, are treated as optional, so that these class icons may be simplified when warranted.

Individual object icons are usually minor variants on the corresponding class icon. Coad-

Yourdon’s diagrams also distinguish classes that may be instantiated directly, represented

by the class-&-object symbol of Figure A-4, and those that are abstract classes, using a vari-

ant on this icon, without the outer box. Each of these object model diagramming techniques

is most effectively utilized within a CASE tool that is designed to support it. Such tools are

readily available commercially for all the most popular methodologies, though they vary

widely in their features.

Diagrams of object models contain structures that correspond to association struc-

tures in the real-world domain that they model. The structures in object model diagrams are

composed from class and object nodes and the arcs between them representing association,

such as subclass inheritance, part-whole relations, and others. Figure A-5 illustrates dia-

gramming conventions for some of the possible links between classes from one of the more

Class-name

operation-1
operation-2

....

attribute-1

attribute-2
type-1

type-2

(a) Jacobson’s bubble class icon
& attribute graph

Class-name

operation-1
operation-2

....

attribute-1
attribute-2

(b) Coad-Yourdon’s OOA
class-&-object symbol

Class-name

operation-1()
operation-2()...

attribute-1

attribute-2....

{constraints}

(c) Booch’s cloud class icon

Class-name

operation-1 [(argument-list-1): result-type-1]

operation-2 [(argument-list-2): result-type-2]

....

attribute-1: [data-type-1 = default-value-1]

attribute-2: [data-type-2 = default-value-2]

....

(d) Rumbaugh’s OMT rectangle class icon

Figure A-4. Class Icon Examples

A-14

popular OO methodologies [RUMB91]. Considerable variation exists between methodolo-

gies on the precise conventions for annotating arcs to indicate their types and qualifications.

In Rumbaugh’s notation, cardinality of the associations can be indicated by the filled

(many) and unfilled (zero-or-one) circles on the ends of their arcs as shown, or by numbers

or ranges of numbers. More discussion of object/class associations follows in Sections A-

2.5, A-2.6, and A-2.7 for the different association types of inheritance, part-whole relations,

and other associations.

The simplified example in Figure A-6 of an object model from [RUMB91] illus-

trates one approach to diagramming object structures applied to a business domain. It

illustrates a many-to-many associationworks-for between thePerson class and theCompa-

ny class, a one-to-many association between theCompany class and theDepartment class,

and a zero-or-one to zero-or-one association ofManages between theManager class and

theDepartment class, among others. It illustrates inheritance from thePerson class by the

subclasses,worker andmanager. Classes are represented at varying levels of detail: solely

by class name, with attributes, and with both attributes and operations.

Class_A Class_B
Assoc_1

Class_A

Class_B

Class_A Class_B
Assoc_2

Class_A Class_B
Assoc_3Class_B inherits from Class_A

Assoc_1 is a one-to-one association from Class_A to Class_B.

Assoc_2 is many-to-many from Class_A to Class_B.

Assoc_3 is one-to-zero-or-one from Class_A to Class_B.

Figure A-5. Examples of Class Link Diagram Conventions

Source: [RUMB91]

A-15

Activities

The principal activities and techniques used in building such object models are all

just means of identifying their components and putting them together into a coherent pic-

ture, as can be summarized by the following list:

• Identify classes and objects.

• Identify responsibilities (services or operations) associated with classes.

• Identify attributes, the data that describe objects.

• Identify inheritance relations, the generalization and specialization of classes.

• Identify whole-part structures or aggregations of classes/objects.

• Identify other associations.

• Identify “collaborations” between objects/classes.

Figure A-6. Example Object Model with Inheritance and Associations

Person

name
address
social security no.

charge-time
earn-salary

Company

name
address
phone number
primary product

hire
fire

employee employer

Project

project name
budget
priority

Works-on

Product

product name
cost
weight

ooWorker Manager

Responsible-for

Department

Manufactures

Manages

Works-for

job title

Source: [RUMB91]

A-16

• Maintain a data dictionary.

• Perform CRC card analysis (class, responsibility, collaborator identification).

• Identify constraints and rules.

• Partition the analysis model (e.g., interface, entity, control).

The first six activities are essential in building an object model of the application domain;

they identify the basic elements of an object model: classes, operations, attributes, inherit-

ance, aggregation, and other associations. The order in which these activities occur and

their prominence during the analysis stage vary between different methodologies. “Data-

driven” methods (e.g., Coad-Yourdon’s OOA and Rumbaugh’s OMT) focus more on the

attributes and associations of classes, while “responsibility-driven” methods (e.g., Wirfs-

Brock) focus on responsibilities of classes and collaborations between them.

Identification of collaborations—the use of the services and operations of one class

by another—is not included as part of the object model by all methods. Booch’s method

includes collaboration identification as his analysis stage and incorporates collaboration

links on the “class diagrams” that represent his object model [BOO94a]. OMT, however,

has no place for collaborations on its object model diagrams, relegating them solely to the

event flow and event trace diagrams used during its dynamic modeling stage. Thus, model-

ing collaborations may be considered an optional part of the object modeling stage,

although it is essential somewhere in the development process for every mature OO devel-

opment methodology.

Maintenance of a data dictionary occurs concomitantly with the other activities in

any good development environment since object model components should be defined as

they are identified and maintained in a common place for convenient reference. CRC card

analysis is one widely adopted technique for structuring some of these basic activities:

identifying classes, their responsibilities, and their collaborations with other classes. The

constraints and rules identified by the next activity in this list are rather specialized features

of objects and classes that are not addressed by every methodology and may not appear in

every object model. The last activity listed, “Partition the analysis model,” addresses parti-

tioning the whole object model into subareas, which is approached in different ways by dif-

ferent methodologies. Some methodologies prescribe an initial partition of the whole object

model prior to its construction (e.g., Jacobsen [JACO93] and Shlaer-Mellor [HUTT94]),

while others reserve the explicit groupings of objects until the last step of analysis (e.g.,

[RUMB91, pp. 168-169]).

A-17

A.2.2 Identifying Classes and Objects

A wide variety of techniques have been proposed to aid in identifying suitable

objects and classes for inclusion in the object model and eventual implementation in the tar-

get application. Some methodologies recommend beginning with the text of the problem or

requirements statement and extracting noun phrases as candidate class names (e.g., Wirfs-

Brock [HUTT94, p. 192], Coad-Yourdon [CDYD91, p. 60], OMT [RUMB91, p. 153]).

Others caution against applying this technique automatically since natural language text

can be misleading, and a more thorough analysis is usually required to confirm the suitabil-

ity of such candidates [BOO94a, p. 159-160]. Several other sources are commonly recom-

mended as places to look for relevant objects and classes, including interviews with domain

experts, examination of similar existing applications, first-hand observation of domain

practices, and literature research in the application domain, and, in the case of a legacy sys-

tem, any existing documentation such as entity-relationship diagrams that may be available.

Use cases, or scenarios, provide another major source of candidate objects and

classes. Jacobson’s OOSE methodology advocates identifyingall of the required domain

entity objects from the use cases developed during requirements analysis [JACO93, p. 184].

Booch uses scenario analysis in conjunction with general domain analysis to identify class-

es and objects. His domain analysis identifies classes and objects for the general problem

domain, whereas scenario analysis focuses upon scenarios of the specific target application

in that domain [BOO94a, pp. 253-254]. Thus, scenario analysis may pick up classes/objects

overlooked by domain analysis, as well as weed out domain classes/objects that are not

used in the target application. However, at least one methodology (i.e., OMT) neglects these

object modeling benefits of scenario analysis in favor of using scenarios solely to extract

dynamic behavior. The OMT methodology presented in [RUMB91] fails to suggest using

scenario analysis for identifying classes/objects, although its iterative approach implies the

potential of feedback from scenario analysis in dynamic modeling to object modeling. We

see a full range of involvement of scenario modeling in object/class identification among

different OO development methodologies, from being the only approach to being ignored.

Development of an object model is an universal feature of OO analysis. While

classes and some of their aspects (attributes, services, associations, inheritance,

aggregations, and collaborations) are identified at this stage by every OO meth-

odology, considerable variation exists on the emphasis given to different aspects.

A-18

Scenario modeling and its potential benefits are discussed further in the section on dynamic

modeling, Section A.3 on page A-40.

Some methodologies identify particular types of classes/objects to look for, whether

in requirements statements, scenarios, domain literature, or interviews. Coad-Yourdon’s

OOA suggests looking for part-whole and subclass structures, interactions with external

systems, devices, events and things that must be recorded, roles played by agents, locations

or sites, and organizational units [CDYD91]. The Shlaer-Mellor method has been described

as emphasizing tangible things, roles, events, and interactions as the primary sources of

candidate classes/objects [BOO94a, p. 155]. OMT cites two general types of classes: phys-

ical entities such as houses, people, and machines; and concepts such as trajectories, seating

assignments, and payment schedules [RUMB91, p. 153]. Many such sets of class categories

may be useful for suggesting candidate classes for inclusion in an object model.

After identifying object/class candidates, most methodologies include a winnowing

process in order to narrow down the candidates to those object and classes that are truly

required for the specific application. Specific reasons that have been identified for exclud-

ing or restructuring candidate classes include the following [BOO94a, CDYD91,

RUMB91]:

• Redundancy appears in multiple candidate classes.

• Domain class is irrelevant to target application.

• Class is imprecise or vague.

• Class name better describes an object attribute, operation, or implementation

construct.

• Class name describes a role of an entity, better modeled as an association.

• Attributes of candidate class do not apply to all class members.

• No attributes of candidate class are essential to the application.

• Candidate class with only one attribute may be better modeled as attribute.

• Operations of candidate class do not apply to all class members.

The application of these criteria should continue throughout the analysis process and its

iterations as new objects, classes, attributes, associations, and responsibilities are identi-

fied and refined.

A-19

A.2.3 Identifying Responsibilities, Services, and Operations

Definitions

Responsibilities, services, operations, methods, class member functions—all these

terms refer to essentially the same things: the behavioral aspects of classes and objects, in

contrast to their declarative aspects of having certain attributes or associations. Services

have been described as providing the “processing” component of an OO data processing

system, where attributes provide the data [CDYD91]. The terms “responsibilities” and “ser-

vices” are used in OO analysis and design to emphasize the implicit contractual relations

between classes to provide the specified functionality. From a client-server perspective, the

operations of an object/class provide services for other objects/classes that play the role of

clients using those services. “Operations” is a fairly neutral term referring to object/class

procedural capabilities more from the perspective of the object/class itself, irrespective of

its use elsewhere. “Methods” and “class member functions” are largely language-specific

terms for operations from the perspective of implementation, referring to specific algo-

rithms or code that implement class operations. Class operations implemented in the OO

language Smalltalk are referred to as “methods,” while those in the C++ language are

referred to as “class member functions” [LIPP91]. In Ada 95, they are simply called “oper-

ations,” although these are divided into the separate kinds of procedures and functions

[INTR93].

Types of Operations

Operations come in a wide variety of types. Some of the more commonly distin-

guished categories of operations include the following:

• Constructors and destructors

• Attribute access (information request)

• Association link traversal

• Calculations

• Printer output

• Screen updates

• Action requests

• Event monitoring

A-20

• Event notifications

Constructors and destructors create and destroy individual objects of a class by allo-

cating and deallocating memory, instantiating data structures, and setting links in accord

with the class definition. Methodologists commonly advise to use uniform methods for con-

structors and destructors across all classes in order to reduce both risks and development

costs. Attribute access methods must be provided for all encapsulated attributes to provide

protected means of reading, writing, and updating their values. However, many obvious

operations, such as these attribute accesses and association accesses, may be neglected in

the analysis phase, though they must be fully accounted for during design and implemen-

tation. Some attributes, such as the public attributes in a C++ implementation, do not need

special access operations since they are directly accessible through the built-in language

naming conventions. However, use of publicly accessible attributes is a violation of the OO

convention of data encapsulation, and is generally discouraged in OO programming.

Traversing association links, such as the linksWorks-for, Manages, andWorks-on

in the example of Figure A-6 on page A-15, may be accomplished using operations for each

association of a class. Ordinarily, such association-traversal operations are not separately

identified in an object model, being implicit in the association links. Calculations of all

types, from simple sums to complex mathematical algorithms applied to large arrays of sci-

entific data, constitute one class of operations that are commonly included on object dia-

grams.

While many class operations function solely within the confines of the software,

others interact with the external world. Printer output, display updates, graphical object

controllers, and machinery controllers are just some of the many kinds of class operations

that can directly affect the external world. Operations such as action requests, event moni-

toring, and event notification are other types of actions that may involve real-world interac-

tion when involved in systems that monitor and/or control external events or processes.

Internal information system activities may also fit these categories. Some changes to infor-

mation, for example, may be modeled as events or as the results of actions by a user or an

internal program object.

Diagram Notation

Operation names often appear directly below the attribute names in the class icons

of the class/object diagrams of OO methodologies, as illustrated in Figures A-4 and A-6.

The arguments taken by an operation may also be included on a class diagram or in the cor-

A-21

responding data dictionary. Certain types of operations, such as constructors, destructors,

and attribute access operations, are commonly not represented on object/class diagrams

since some services satisfying these needs may be assumed to exist for all classes and

attributes. Listing of other operations on class diagrams is optional, depending on their sig-

nificance to analysis and design. Regardless of whether they appear on diagrams, all oper-

ations should be listed in the object specifications or data dictionary.

Identification Techniques

There are many techniques for identifying class object operations. In fact, many

other activities during the analysis phase support the identification of operations. Use cases

or scenario descriptions can be directly analyzed to extract the operations that are often

implicit in action verbs such ascalculate, determine, select, check, issue, notify, mark.The

classes and objects already identified may be considered as sources of activities character-

istic of their types in the application domain. When operations are so derived from general

domain knowledge of the activities of some class of objects, they must, of course, be tested

for specific relevance to the targeted application. Some general activities commonly asso-

ciated with a certain class of objects may not be relevant to the information system being

developed. Many of an application’s essential operations may be best identified during the

detailed dynamic analysis, which models the target system’s required behaviors, as dis-

cussed in Section A.3. But an initial set of operations suggested by general domain knowl-

edge may be helpful in formulating such dynamic models. More specifically, the attributes

of the object model may be a fruitful source of suggestions, based on knowledge of opera-

tions that are commonly performed upon them. Basic access operations may, of course, be

assumed for all attributes. Candidate operations may also be refined by recognition of com-

monalities among already identified operations, which suggests a more general operation

that might better be placed within a common superclass.

While basic object modeling of classes and attributes may be suggestive of many

candidate operations, most of the nontrivial operations will have to be validated by the

needs identified in dynamic modeling. Depending upon the methodology adopted, this

dynamic modeling may occur prior to, concurrent with, or subsequent to detailed object

modeling. In the Responsibility-Driven Design method of Wirfs-Brock, the provisions of

operations and attribute values are both types of class responsibilities whose determinations

are practically concurrent using CRC card analysis [HUTT94]. When object modeling pre-

cedes dynamic modeling, as in Rumbaugh’s OMT, it makes sense to delay the selection of

class operations until the end of the analysis phase, as OMT does. If detailed dynamic anal-

A-22

ysis is delayed until the design stage, as in Jacobson’s OOSE, then selection of operations

may be delayed until then, as OOSE prescribes [JACO93, p. 189]. Other methodologies

offer a more integrated approach to object and dynamic modeling during analysis, as does

the Booch method in its broad category of “identifying the semantics of classes and

objects,” which is part of its analysis stage [BOO94a].

The identification of operations during dynamic modeling is briefly summarized

here, with detailed explication below in the separate subsection devoted to it. The interac-

tion diagrams developed under many OO methodologies during dynamic analysis include

events (requests for services) sent between objects. Other methodologies that lack explicit

interaction diagrams may begin by listing required collaborations between classes, as in the

CRC card analysis central to the Wirfs-Brock method. A collaboration graph generated

from the refined CRC card analysis may also aid determination of appropriate operations

to meet class responsibilities in these collaborations. Each event or collaboration can iden-

tify a candidate operation to satisfy its needs, though many such candidates may be redun-

dant or trivial, so that they need not all be added to the object/class diagram. Some

collaborations may only involve simple attribute access or update operations, which are

already understood to exist. Responses may simply return values from previous messages

or function calls which do not require any independent operations.

The other main product of most OO dynamic modeling—state transition diagrams

—provides another source of candidate class operations. The actions or events on transi-

tions between the states of a object are commonly modeled as operations and may be added

to the object model when not trivial (such as attribute access operations) or already docu-

mented. Given the many sources of candidate operations, high levels of redundancy can be

expected so that checking for the equivalence and subsumption of candidate operations

may be a major part of operations selection. Identification of overlapping functionality in

operations from different classes may also indicate a need for operation consolidation, such

as placement of a comprehensive operation in a common superclass. Such inheritance of

common functionality is one of the principal means of simplifying OO development, as

further discussed in Section A.2.5 on page A-24.

A.2.4 Identifying Attributes

Definitions

Attributes of classes specify a type of property possessed by each object in that

class. Common attributes of physical objects, for example, include color, weight, height,

A-23

width, and location. An actual instance of such a property possessed by a specific object is

specified by assigning a value to the attribute of the object, e.g., the value “red” for the color

of a particular vehicle. In OO systems, the data about objects are contained in their attribute

values whose complexity can range from primitive numeric and alphanumeric values to

complex composite structures such as images and video sequences. The attributes actually

used for an object class in a particular information system depend on the nature of the object

class and the requirements of the specific application.

When attributes qualify associations between two objects they are calledlink

attributes. Rumbaugh gives the example of an association betweenStockholder andCom-

pany having a link attribute ofnumber-of-shares [RUMB91, p. 162]. Such link attributes

are essential in specialized domains that use attributed relational graphs, such as certain

approaches to image processing. But attributed links are just one of many possible refine-

ments of class associations not covered by many methodologies and which are often

neglected in practice.

Diagram Notation

Class attribute names appear directly below the class names in the class icons of the

class object diagrams of most methodologies, as illustrated in Figures A-4 and A-6. The

data type of the values (e.g., integer, string) taken by an attribute may also be included on

a class diagram or relegated to a corresponding data dictionary. Individual object icons, in

contrast to class icons, frequently display only attribute values, not attribute names or

datatypes, as they are used, for example, in [BOO94a] and [RUMB91].

Some methodologies also support identification of default values for class

attributes. A default value for a class attribute is one which may be assumed to be the cor-

rect value for that attribute for all objects in the class which do not have an overriding value

specified. Such default values may be specified with the attribute on a class icon in the nota-

tions of Rumbaugh [RUMB91] or Booch [BOO94a]. While some OO programming lan-

guages do not directly support the specification of default values for class attributes, this

capability can usually be programmed by encapsulating the attribute values and providing

a default through an access function which is included in the operations of the class.

Access to attribute values for examination or updates is ordinarily provided only

through explicit services, methods, or operations of an object/class in order to support

encapsulation of the actual structure and format of attribute values. Such encapsulation is

one of the basic features of OO systems, increasing maintainability by keeping changes to

A-24

underlying data structures isolated from other parts of an OO system. The actual attribute

access services, such asread or update, are not ordinarily specified on object/class dia-

grams since it is understood that some such services exist for all class attributes.

Identification Techniques

Attributes of a class can be identified by inquiring about the general description of

class members, which may be obtained from requirements specifications, general domain

documentation, or interviews with domain experts. Rumbaugh notes that the attributes in

such descriptions can often be identified by nouns followed by possessive phrases, such as

“the color of the car.” The different states that an object may pass through can also serve to

identify attributes required to differentiate those states. A major source of class attributes is

to be found in the data required of objects in order to execute their responsibilities. Thus,

much of the determination of attributes will have to follow some analysis of class respon-

sibilities, such as determined during scenario or use case analysis. Both Booch and Rum-

baugh caution against excessive commitments to class attributes during the analysis phase,

emphasizing the inclusion of only those attributes that are needed for identified operations

in the application [BOO94a, RUMB91].

A.2.5 Identifying Inheritance Relations

Definitions

Inheritance relations exist between two classes when one is a subclass of another,

that is, when all the objects in one class are also in the other class. The subclass is then said

to inherit the attributes and operations of the superclass. Such inheritance relations are also

commonly referred to as generalization-specialization relations: the subclass is a special-

ization of the superclass and the superclass is a generalization of the subclasses. The classes

Worker andManager shown in the object model of Figure A-6 on page A-15, for example,

are both specializations ofPerson, inheriting its attributes, such asname andaddress, and

its operations, such asearn-salary.

Inheritance relations can create class hierarchies of varying depth, breadth, and

complexity. Single inheritance, where classes are allowed at most one generalization or

ancestor, restricts the resulting hierarchies to tree structures,1 as illustrated in Figure A-7.

Multiple inheritance, which allows a class to have multiple generalization ancestors, sup-

ports more complex “tangled hierarchies.” Multiple inheritance is directly supported by the

1 Assuming that mutual inheritance and looping are excluded.

A-25

OO languages C++, CLOS, and Eiffel, but is unsupported by Smalltalk and Ada. Ada 95

does not directly support multiple inheritance either, although some of the effects of multi-

ple inheritance may be achieved by the use of the Adawith anduse clauses to provide

access to the operations and data structures of classes outside of the current class and its

ancestors. Other workarounds for handling multiple inheritance when the implementation

language does not support it are discussed by Rumbaugh [RUMB91].

Diagram Notation

Figure A-7 shows part of the upper levels of a single inheritance hierarchy. While

this example is asingle tree structure, having the common rootObject for all classes, this

is not a general requirement. Object models may also be composed of multiple hierarchies.

Although some OO languages, such as Smalltalk, ultimately require a common root, this

need not constrain the object model in the analysis stage since a common root may be added

in the design phase if needed by the implementation environment. Multiple inheritance is a

separate issue, as illustrated by Figure A-8, where the classes ofAmphibious_car and

Sea_plane each have multiple ancestors from which they inherit their dual capabilities,

although all share the common ancestorVehicle.

Figure A-7. A Single Inheritance Tree

Physical_object Abstract_object

Object

Set

Ordered_set

Relation

Event

Animate_object Inanimate_object

Natural_object Artificial_object

StructureVehicle Device

Ground_vehicle Air_vehicle Water_vehicle FunctionBuilding

Proposition

A-26

Purposes

Inheritance structures serve several purposes within OO systems: the organization

of classes, reduction of redundancy, enforcement of consistency, and support of reuse. The

generalization-specialization relations of inheritance structures provide a natural organiza-

tion for the many objects of a typical OO application, aiding comprehension and simplifi-

cation. Placement of common attributes, operations, and associations in the most general

classes reduces redundancy in their specification and implementation. It also enforces a

consistent representation and implementation for features common to multiple classes,

ensuring functional compatibility between different classes with respect to those features.

Finally, the benefits of inheritance capabilities extend beyond any single project to

support effective reuse of class components by multiple projects. Classes from class librar-

ies or reuse repositories that offer potential for reuse often require some customization

before they can fully meet the needs of a current project. Inheritance provides the capabil-

ities for specializing an existing class by specifying a subclass that inherits desired features,

overrides undesired features, and adds missing features. These basic inheritance capabili-

ties create a very accommodating environment for adapting repository components to the

needs of a current project, as well supporting reuse within a single project.

Vehicle

Ground_vehicle Air_vehicleWater_vehicle

CarTruck Airplane JetCruiser

Sea_planeAmphibious_car

Figure A-8. A Multiple Inheritance Hierarchy

Tank HelicopterCarrier

A-27

Identification Techniques

Inheritance relations between classes are often readily apparent from common

sense or domain knowledge. However, many different inheritance structures are ordinarily

compatible with this knowledge for any given domain. The best structure for an inheritance

hierarchy depends on the point of view of the application and its context. Effective struc-

turing of inheritance hierarchies is ordinarily aided by the analysis of commonality among

the attributes and operations of candidate classes. An overlap among the attributes or oper-

ations of distinct classes may indicate the presence of a common superclass from which

they can inherit these features. For example, imagine a model containing separate classes

for ground vehicles, air vehicles, and water vehicles, all of which have common attributes

for maximum velocity, maximum range, fuel consumption, maximum cargo load mass, and

number of crew members, along with common operations such as range as a function of

fuel amount and velocity. Then, if there is no common superclass, it makes sense to extend

the model with one to cover all vehicles that includes all of their common attributes and

operations.

If the attributes or operations of a candidate class fail to apply to all its members,

this can indicate a need for a new subclass or subclasses to which the offending attributes

or operations may be relegated. For example, if the class of tanks has attributes for turret

dimensions but not all tanks of interest have turrets, then separate subclasses of turreted and

un-turreted tanks may be indicated. Unnecessary classes may also be eliminated while

structuring the inheritance hierarchy. Inessential subclasses may be recognized if all of their

required structure and functionality can be expressed in a superclass. Inessential super-

classes should be eliminated if they do not offer any common structure or functionality to

their subclasses. This helps keep the hierarchy depth at a level suitable for the application.

Some guidelines that can help in constructing effective inheritance hierarchies are

as follows:

• Use information about common services and attributes of classes.

• Never use inheritance overrides in a subclass to remove a superclass service.

• Do not violate the commonly accepted categories of the application domain.

Although these are all common sense guidelines, they still can be helpful to the novice and

can influence the order of activities in object modeling.

Like other aspects of OO models, inheritance hierarchies are constructed iteratively.

A-28

As deeper analysis and design uncover more classes or required functionality, or reveal

more commonality of structure and functionality, the inheritance structures may be

changed to accommodate them more effectively. Because effective structuring of inherit-

ance hierarchies requires considerations of commonalities of structure and function, it can

be more effective to delay full-fledged inheritance analysis until after some analysis of both

attributes and operations, as suggested by the first guideline (“Use information about com-

mon services and attributes of classes”). Some methodologies implicitly recognize this

constraint, as Booch does by placing the identification of class relations, including inherit-

ance, after identification of class semantics (structure and behavior) [BOO94a]. Other

methodologies, such as Rumbaugh’s OMT [RUMB91], prescribe an initial analysis of

inheritance before identifying operations, presumably with the expectation of adjustment

during iteration. Iteration naturally makes the development process quite forgiving and

allows flexibility in the order of activities since the next iteration can adjust for changes due

to activities of a prior iteration. Convergence towards a stable model is expected as iteration

proceeds, although indecisive analysts risk what Booch calls “analysis paralysis,” where

they are stuck iterating their analysis endlessly [BOO94a, p. 255]. The cure for analysis

paralysis, according to Booch, is to move on to prototyping, design, and implementation,

and not attempt to get the analysis model perfect.

A.2.6 Identifying Part-Whole Relations

Definitions

The part-whole relation is a ubiquitous type of association between two objects in

which one is a part of the other. It is most commonly exemplified in relations of physical

containment or composition between physical objects, such as the pieces of a jigsaw puzzle

or the components of an engine. Yet other types of part-whole relations find representation

in ordinary discourse as well as in OO software. Social organizations ordinarily decompose

into parts, such as the divisions, departments, groups, and committees of business organi-

zations, and the divisions, battalions, platoons, or squadrons of different military organiza-

tions. The individual members of any organization may also be treated as parts of it, though

there is some disagreement on the best representation of such relations in OO systems.2

Less tangible entities, such as events, processes, propositions, and mathematical functions,

may also participate in part-whole relations: complex events may decompose into subev-

2 Rumbaugh argues against treating employees, for example, as parts of a company [RUMB91, p. 58], pre-
ferring aWorks-for relation; Coad and Yourdon treat clerks as parts of organizations [CDYD91].

A-29

ents; processes decompose to subprocesses; compound propositions may decompose into

primitive propositions; and a piecewise continuous mathematical function can be decom-

posed into continuous segments.

While any particular part-whole relation associates two individual objects, a generic

part-whole association between two classes may be specified in an OO object model to indi-

cate that each (normal) instance of one class has a part which is a member of the other class.

We say that computers have CPUs, cars have wheels, lamps have bulbs, airplanes have

wings, and ships have hulls—all to indicate that each object in the first class has one or

more objects in the second as a part. Most specifications of part-whole relations for OO sys-

tems associate pairs of classes, which are then instantiated to specific part-whole instances

as instances of those classes are created.

Part-whole associations have been labeled in different ways by different authors.

Jacobson calls themconsists-of associations [JACO93, p. 181]; Rumbaugh notes that they

are often calleda-part-of relations [RUMB91, p. 59]; and Booch refers to them ashas-a

relations [BOO94a, p. 180]. Structures composed of a whole, its parts, and their relations

are commonly referred to asaggregates, and the grouping of parts to form a whole as an

aggregation.

Diagram Notation

Part-whole relations between classes are represented in the object models of OO

methodologies by special links between them, as illustrated for Rumbaugh’s OMT in Fig-

ure A-9. Other methodologies use different elaborations on the links, expressing part-whole

relations, though they often have a distinctive symbol (such as OMT’s diamond◊) to iden-

tify the whole or aggregate end of the whole-part relation. Part-whole relations can form

large strict hierarchies or more complex looping and recursive structures. Large social insti-

tutions, such as government departments and big corporations, characteristically decom-

pose into broad, deep hierarchies of part-whole relations. Recursive structures are more

likely to appear in more formal systems, such as programming languages or window sys-

tems, in which one statement or window may have another as a part. An example of an

object model including both recursive and non-recursive part-whole relations is presented

in Figure A-10.

Identification Techniques

As with inheritance relations, part-whole relations are often readily apparent from

A-30

Figure A-9. Part-Whole Relations in OMT Object Models

◊

ο◊

Class_K

Class_A Class_B

Every object in Class_K has zero or more objects from Class_L as parts.

Every object in Class_A has zero or one objects from Class_B as parts.

◊

Class_P Class_Q

Every object in Class_P has one or more objects from Class_Q as parts.

1+

• Class_L

Figure A-10. Example of Part-Whole Structures

◊
Program

1+

Task PackageSubprogram

◊
Subprogram
specification

Subprogram
body

Statement

Simple
statement

Compound
statement ◊

1+

◊

◊

A-31

common sense or domain knowledge. Domain experts and any available OO analysis

results from similar existing applications can also be a helpful source of candidate aggre-

gation relations, as with other aspects of object models. As an aid to identifying all of the

relevant parts, aggregates, and their relations, the analyst can ask whether identified classes

have any components or participate in any aggregates that are relevant to the application. It

is crucial to test any newly identified parts to determine whether there is any need to refer

to them or their attributes separately. While much in-depth knowledge on the decomposi-

tion of certain objects may be available, there is no need to include it in the object model

unless the components’ attributes or operations must be distinguished from the whole

object for some purposes of the application. The parts break-down of an airplane, for exam-

ple, may be unnecessary for an application that is scheduling its missions, though essential

for one that is scheduling its maintenance.

A.2.7 Identifying Other Associations

Definitions

The part-whole relations and inheritance relations just discussed are but two exam-

ples of the multitude of different types of associations that may hold between classes or

objects. Examples of other types of associations include the common business associations

of Works-for, Manages, Responsible-for, Works-on, and Manufactures from the simple

business model illustrated in Figure A-6 on page A-15. Other examples, taken from a Battle

Management/C3 information architecture developed by the Ballistic Missile Defense Orga-

nization [BMDO94], include the associations ofis_selected_by, monitors, defines, sets, and

issuesbetweenCommander objects andPlans, Situations, Defended_Assets, Authoriza-

tions, andOrders, respectively, as illustrated in the object model diagram of Figure A-11.

Associations are nothing new, having been widely adopted as a means of organizing

data in databases, where they are better known asrelations. However, while relations in

relational databases may relate entities (objects) to the values of their attributes as well as

to other entities, associations in OO systems are confined to relating objects or classes since

attributes are separately identified. In OO systems, associations provide links between the

associated objects, supporting their traversal both for retrieval of related information and

access to the services and operations available from the associated objects. Whereas data-

bases commonly use many-place relations,3 OO systems tend to emphasize the use of bina-

ry associations (between two objects) because of their simplicity and because attribute

3 A many-place relation is one that relates many attribute values and/or entities in each of its instances.

A-32

values are captured separately.

Diagram Notation

 Associations admit a variety of different types of qualifiers, including cardinality,

roles, attributes, and reification. The cardinality of an association constrains the numbers of

instances of one class that can participate in this association with members of the other

class. A few examples of diagramming conventions for indicating the different cardinalities

of associations are presented in Figure A-5 on page A-14. Specific examples of binary asso-

ciations between pairs of classes are illustrated in Figure A-6 on page A-15 and Figure A-

Figure A-11. Plan Generation and Selection Object Model Example

 Plan

designator

status

desired_result

resource_employment

applicable_situations

evaluate

 Authorization

order_ID

Defended_Asset

location

status

vulnerability

priority

Commander

operational_control

assess_situation

approve_plan

select_plan

assess_authorization

determine_order_adjustment

evauate_plan_need

determine_plan_parameter

 Situation

assets_at_risk_summary

projected_resource_utilization

projected_threat

review_defended_assets

review_objects_of_interest

review_system_capability

review_system_effectiveness

review_tasks

project_threat

project_resource_utilization

monitors

defines

sets

has_execution_constrained_by

Is_described_for

Issues

is_selected_byis_put_into_effect_as

Order

order_adjustments

actual_start_time

actual_end_time

priority

resource_employment

A-33

11 on page A-32, using the OMT object model notation. Ternary (3-place) and higher arity

associations are represented with somewhat more complex links connecting multiple class-

es/objects. Roles may be specified for the different entities involved in an association, as

employee is attached toPerson andemployer toCompany in Figure A-6. Attributes may be

attached to an association link to identify properties of the association, asjob title is

attached to theWorks-for association in Figure A-6. An association may even be reified, or

turned into an object, including operations as well as attributes, although this option is not

discussed in many methodologies.

Identification Techniques

Associations may be identified from the usual sources of domain information:

requirements statements, domain expert interviews, and scenario analysis. Sentences

describing an application domain that use transitive verbs to relate a subject and object will

often specify an association between them. The particular verb and context will, ordinarily,

identify the nature of the association, whether it is an inheritance, part-whole, or some other

type of association. For example, a sentence from a requirements statement or interviews

for a C3 system may state something like the following:

A commander selects plans, monitors situations, defines defended assets,
and issues orders.

This sentence contains four transitive verbs and their objects, identifying four of the asso-

ciations represented previously in Figure A-11.

A.2.8 Maintaining a Data Dictionary

A data dictionary is an alphabetical listing of the types of data items in a system,

with a definition or description of each one. In relational database systems, the data dictio-

nary includes descriptions of the types of data items found in each column of each data

table. In OO systems, a minimal data dictionary contains entries for classes and their

attributes, which correspond roughly to tables and their columns in relational systems. In

addition, some OO methodologies recommend storing other object information in the data

dictionary. Rumbaugh’s OMT recommends preparing a data dictionary during analysis

with one paragraph for each class describing its restrictions, associations, attributes, and

operations [RUMB91]. Booch recommends starting a data dictionary with the initial iden-

tification of classes and objects, and maintaining it as the central repository for all of the

elements of the system, including attributes, responsibilities, associations, categories of

classes, modules, and subsystems [BOO94a, pp. 236, 238, 243].

A-34

While the object/class diagrams developed during analysis and other diagrams

developed in later stages of development may be simplified to focus upon the most impor-

tant features of an OO system in development, a data dictionary should be an exhaustive

compilation of every element in the system (among the types it covers). Ordinarily, good

CASE tools will support a direct mapping between an electronic version of a data dictio-

nary and the various OO modeling diagrams of whichever methodology is supported. A

well-maintained and readily accessible data dictionary can be an effective tool in managing

software development, providing detailed documentation of the models developed during

analysis and subsequent stages of software development.

A.2.9 Performing CRC Card Analysis

Thus far, we have been discussing the identification of the individual elements of an

object model: classes, attributes, operations, and associations. CRC card analysis, in con-

trast, is a technique for simultaneous development and refinement of multiple aspects of

such models. CRC cards are pieces of paper or index cards, each of which is labeled starting

at the top with a class name, followed by its responsibilities and its collaborators, as illus-

trated in Figure A-12. The name of the class on a card may be accompanied by a short

description of its purpose if it is not obvious.4 It is recommended that all writing on the

cards be done in pencil since the analysis process is iterative and expected to require chang-

es and adjustments to classes and their features as it proceeds [BOO94a, p. 159].

4 Including class descriptions on CRC cards is recommended by Wirfs-Brock in her Responsibility-Driven
Design methodology [HUTT94, p. 192].

<collaborator1>
<collaborator2>
<collaborator3>

<collaboratorn>

...

<class_name>

<responsibility1>
<responsibility2>
<responsibility3>

<responsibilitym>

...

Figure A-12. CRC Card Layout

CRC card format CRC card example

Bank Statement
Entry
List

Checkbook

balance
add entry
know entries

Source: [WILK94]

A-35

The collaborators of a class are all the other classes that interact with it either by

calling its services or having their services called by it. Tracing the interactions of collabo-

rations actually falls into the domain of the dynamic modeling part of analysis. While CRC

card analysis does include some dynamic modeling in virtue of its inclusion of collabora-

tions, we introduce it here in object modeling because it can also function as an effective

means of identifying classes and responsibilities. The widely noted blurring of distinctions

between different stages of OO software engineering extends to the separate steps or activ-

ities of individual stages such as analysis.The overlap between object modeling and

dynamic modeling found in CRC card analysis is but one example of how many of the dif-

ferent aspects of OO analysis may proceed in parallel at any given time.

CRC card analysis is essentially a scenario-driven activity in which the cards are

used to represent the classes/objects involved in specific scenarios. The technique is

designed to support collaborative analysis by groups of developers, possibly including

users and domain experts. Cards may be laid out on a table or tacked up to a board, and

grouped to represent patterns of collaboration, facilitating comprehension of and adjust-

ments to the model by a whole group. The technique begins with a development team walk-

ing through each scenario, associating the required scenario activities with the

responsibilities of specific classes and identifying the communication between collaborat-

ing classes as they call upon each other’s services. As subsequent scenarios are analyzed,

the CRC cards are adjusted to accommodate them. New classes may be added to handle

new responsibilities, existing responsibilities may be reassigned to specializations or gen-

eralizations of existing classes, and new collaborations may be recorded. The process iter-

ates until it converges upon a stable set of CRC cards that cover all the activities of all of

the scenarios under consideration. The results are transferred to the object model and the

dynamic model.

CRC card analysis was introduced by Beck and Cunningham as a pedagogical tech-

nique for teaching OO programming [BKCN89]. It has been adopted as one of the central

techniques in Wirfs-Brock’s Responsibility-Driven Design and in Hoeydalsvik’s Object-

Oriented Role Analysis and Modeling [HUTT94]. Booch has recommended it as “a simple

yet marvelously effective way to analyze scenarios” [BOO94a]. While the technique has

been criticized by Jacobson as potentially hard to scale up to large problems [JACO93, p.

499], it is not clear that this criticism is justified since the technique’s application may be

limited to manageable subsets of a large system’s scenarios at any given time.

A-36

A.2.10 Identifying Constraints and Rules

Constraints are conditions that must be preserved by a system, such as cardinality

constraints on associations and range constraints on the values of attributes. Rules may be

considered as a type of (potentially complex) constraint of the form:

If <condition_1, condition_2,...condition_n> then <result>

in which their results are constrained to hold whenever their conditions hold. Alterna-

tively, constraints may be considered a simple type of rule. The Object Management

Group (OMG), for example, identifiesconstraint ruleandassertion rule as types of rules

in the basic concepts of its technical framework [HUTT94, pp. 124-125]. However their

relationship is conceptualized, constraints and rules are distinctive features of many OO

systems. Both express declarative conditions whose truth should be preserved by the sys-

tem, in contrast with procedures, operations, or services which do not have truth values.

While practically all OO methodologies model cardinality constraints on associa-

tions, as described in the previous paragraph, other types of constraints are often neglected

in object modeling. The OO analysis of Coad-Yourdon, for example, does not discuss mod-

eling of either attribute constraints or rules [CDYD91]. If-then rules are not even mentioned

explicitly by most OO methodologies, though they are essential components of OO systems

developed in the field of artificial intelligence (AI). The typical “rule-based” or expert sys-

tem in AI is an OO system with “frames” or “units” containing class object information

along with related rules that trigger under specified conditions such as attribute updates.

Despite such wide usage in AI, only 1 of the 21 different OO methodologies recently sur-

veyed by the OMG explicitly included if-then rules in its object models [HUTT94]. Thus,

most existing methodologies would have to model rules in some other way, such as objects

or operations. As an object, a rule might be associated with domain objects whose attribute

updates might trigger a rule method which fires or executes the rule. Alternatively, each rule

might be encapsulated as an operation in a class whose attributes or associations are

involved in its conditions or results.

Constraints are represented differently in object model diagrams, depending upon

their type and the OO methodology being used. Cardinality constraints in associations are

commonly represented by qualifiers, numeric or symbolic, on the ends of links, as dis-

cussed previously. Constraints on a class or its members are included within braces (curly

brackets—{ }) on the class icon in Booch’s class model diagrams [BOO94a]. Rumbaugh’s

OMT also places them within braces, although just outside his class icons [RUMB91].

A-37

Constraints on associations are also enclosed in braces and placed on or near the relevant

association links in both Booch and OMT diagrams. If-then rules are included in the class

icon on a par with attributes and operations in one methodology, the Graham/SOMA

(Semantic Object Modeling Approach) [HUTT94].

A.2.11 Partitioning the Analysis Model

All but the simplest object models benefit from some organization or partitioning of

their object classes into related groups. This aids comprehension during analysis and

design, and provides a basis for formulating and implementing subsystems during design

and implementation. Most OO methodologies prescribe some such partitioning of the

object model, although different methodologies often prescribe different types of partitions

at different stages of development using different terminology.

Jacobson, for example, insists that the object model be divided at the outset of

object modeling into three basic groups of objects/classes: interface objects, entity objects,

and control objects [JACO93, p. 132, 174-195]. Interface objects include the obvious things

such as computer display windows, menus, and buttons, as well as other input/output devic-

es such as display panels, instruments, and machinery. Entity objects include the natural

entities in the application domain, such as the employees, companies, and departments of

a business application, as well as other persistent objects. Control objects are sometimes

needed for behaviors that do not fall naturally into the other types of objects.

Thisa priori division of the object model into class/object types is accompanied by

a further division intosubsystems based upon functional groupings of identified classes/

objects. Subsystem groupings are included as part of the analysis model by Jacobson.

According to Jacobsen, the groupings may not be delineated until the end of analysis in

small projects, although larger projects may need to identify subsystems much earlier in

order to distribute development work in accord with this partition of the system [JACO93,

pp. 195-199]. For the design phase, Jacobson develops another partitioning concept, the

block,which is an abstraction consisting of one or more analysis-level classes/objects.

In the Booch method, partitioning of classes/objects is not pursued during the anal-

ysis phase. Classes are grouped intocategories during architectural design, and the pro-

gram-level modules that implement classes are grouped intosubsystems during design

[BOO94a, p. 244]. Booch distinguishes logical-design groupings ascategories from phys-

ical design groupings assubsystems; Jacobson does not, referring to analysis, design, and

implementation groupings assubsystems.

A-38

Rumbaugh’s OMT suggests grouping classes and associations into relatively small

modules during the analysis phase. OMT recommends keeping each module small enough

so that its object model diagram can fit on a singlesheet of paper [RUMB91, p. 43]. OMT

postpones establishing major partitions of the object model until the design phase, where a

hierarchy ofsubsystems is developed that includes modules as the lowest level of subsystem

[RUMB91, pp. 219-220]. Naturally, the composition and organization of the modules from

the analysis phase may have to be adjusted during design to better accommodate the con-

straints of the implementation environment.

Coad-Yourdon’s analysis phase partitions classes and their features into coherent

subjects which are comparable to what are calledsubsystems by Jacobson and Rumbaugh,

andcategories by Booch [CDYD91, pp. 106-118]. In addition to a partitioning intosub-

jects, there is an orthogonal partitioning of an OO system intolayers andcomponents in

Coad-Yourdon’s OOA, as illustrated in Figure A-13 [CDYD91, p. 179]. Among these OO

analysis layers, only thesubject layer represents any real partition of the object model,

assigning different classes/objects to different subject groupings. The other layers simply

view the object model through different sets of its features (e.g., attributes or services),

while leaving the classes/objects unpartitioned. This OO analysis division intocomponents

is comparable to Jacobson’s division into interface, entity, and control objects, although

Coad-Yourdon’s OOA further divides control objects into task control and data control (or

management) objects.

The Shlaer-Mellor method also insists on a high-level division of the system and its

models into distinct subject areas that it callsdomains, comparable in scope to the

components of Coad-Yourdon’s OOA. Shlaer-Mellor identifies four types of domains: a

single application domain, general domains (including interfaces to users and

instruments), anarchitectural domain (including data management, multi-tasking, and

distributed processing), andimplementation domains (including operating systems and

Figure A-13. Coad-Yourdon’s Multi-Layer, Multi-Component Model

Subject layer
Class-&-Object layer

Structure layer
Attribute layer
Service layer

Human
Interaction
Component

Problem
Domain

Component

Task
Management
Component

Data
Management
Component

A-39

programming languages) [HUTT94, p. 167]. Partitioning at this level is listed as the first

step of this development methodology. The method also allows that domains may be “fur-

ther partitioned intosubsystems to provide coherent and manageable pieces of work”

[HUTT94, p. 166].

In summary, we observe that some methodologies prescribe ana priori partitioning

of their models beginning in the analysis phase, as illustrated by the partitions listed in

Table A-1. In addition, most methodologies prescribe ana posteriori partitioning of their

object models into closely related groups of objects/classes, though they often use different

terms to describe such groupings and to introduce them at different stages of development.

Jacobson, Rumbaugh, and Shlaer-Mellor all refer to these partitions assubsystems;Coad-

Yourdon call themsubjects; and Booch refers to logical-design partitions ascategories,

while his physical-design partitions are calledsubsystems.

Table A-1. Different Types of A Priori Partitions of OO Models

Methodology
Type of
Partition

Partitions

Jacobson’s
(Objectory)

Object Types Interface Entity Control

Shlaer-Mellor
Method

Domain General Application Architectural

Coad-Yourdon
OOA

Components
Human
Interaction

Problem
Domain

Task
Management

Rumbaugh’s
OMT

[none]

Booch Method [none]

Some grouping of the classes in an object model is practically essential in any

substantial OO project and is widely recommended. No specifica priori partition

is necessary, though some such partition can be helpful—hence most developers

may as well conform with their chosen methodology.

A-40

A.3 DYNAMIC MODELING

The dynamics, or change over time, of a system and its components are the subject

of dynamic modeling. Within OO systems, interest in dynamics is naturally focused on the

dynamics of objects: the possible changes to individual objects over time and the interac-

tions between objects over time. Thus, models of such dynamic behavior ordinarily divide

into two types: state transition models of individual objects and state interaction models for

groups of objects. OO methodologies commonly use both types of dynamic models to cap-

ture the intended dynamic behavior of a system, although they are divided about where to

start such modeling. Some place it within analysis, while others delay it until design.

The process of dynamic modeling may be decomposed into a set of activities cul-

minating in the completion of the two types of dynamic models. One such decomposition,

provided by OMT [RUMB91], is as follows:

• Prepare scenarios.

• Identify events.

• Develop event trace diagrams [interaction diagrams] for each scenario.

• Prepare an event flow diagram for the whole system.

• Build state diagrams for each dynamic class.

The Booch method proposes a similar sequence of activities for dynamic modeling during

the analysis phase [BOO94a, pp. 253-254]:

• Identify primary function points of system and group.

• Storyboard scenarios for groups of function points (CRC cards recommended).

• Document scenarios using “object diagrams” (or interaction diagrams).

• Generate secondary scenarios, as needed, for exceptional conditions.

• Develop finite state machines (state diagrams) for dynamic classes of objects.

OMT, the Booch method, and the Shlaer-Mellor method all place such dynamic

modeling activities within the analysis phase of development. Jacobson, in contrast, ini-

tiates use case (or scenario) modeling in his analysis phase but postpones building dynamic

models until design.

A-41

A.3.1 Preparing Scenarios

Dynamic analysis is ordinarily initiated with some sort of scenario preparation in

which different scenarios of alternative uses of the system are prepared to document the

system’s required dynamic behaviors. A scenario is a (partially) ordered sequence of events

that illustrates a single type of use of the system. The concept of a scenario found in

[BOO94a] and [RUMB91] is essentially identical to that of the “use case” used by Jacobsen

[JACO93], although the latter concept is embellished by its associated use case diagrams

and an emphasis on users, as discussed previously.

Different techniques have been proposed for preparing scenarios. Rumbaugh sug-

gests examining the problem statement for required interaction sequences. Booch suggests

clustering sets of related function points in the system to identify scenarios that exercise the

behaviors specified by the function points.5 CRC card techniques, as described previously

in Section A.2.9, are often recommended for storyboarding scenarios for dynamic analysis,

as well as for identifying objects/classes in building an object model.

Since each scenario represents a single use of the system, multiple scenarios are

ordinarily necessary to capture alternative courses of action in user-system interactions.

One common approach to covering such alternatives divides scenarios into primary ones

which cover typical operating conditions, and secondary ones which cover exceptional cas-

es. Using this approach, both Booch and Jacobson recommend identifying the primary sce-

narios first, and supplementing them with the exceptions as needed.

Several authors emphasize the importance of including domain experts in scenario

analysis in order to ensure accuracy and coverage. Booch also recommends including qual-

ity assurance personnel since scenarios represent testable behavior around which some test-

ing may be organized.

5 Function points represent the observable and testable behaviors of a system, commonly in response to
some external event [BOO94a, p. 252-254].

Regardless of what phases these activities are relegated to, the essence of typical

approaches to OO dynamic modeling lies in the use of scenario analysis to

develop two types of dynamic models: interaction diagrams (also called event

trace diagrams or object diagrams) and state transition diagrams.

A-42

A.3.2 Generating Interaction Diagrams

When a scenario is first developed, it is often expressed by a list of natural language

sentences describing the sequence of activities involved. Transforming such scenario

descriptions into the activities of an OO system involves identifying the specific activities

or events and mapping them to the interactions of objects in the system. This transformation

is facilitated by a variety of techniques, such as textual analysis of scenario descriptions to

identify activities, and use of CRC card techniques to directly represent a scenario via the

collaborations between the involved objects. The results of this transformation are readily

expressed in an interaction diagram which displays the interaction between all of the

objects of a specific scenario.

Figure A-14 shows an interaction diagram for a simple order packing scenario in

which an order of goods is packed by a stockperson. While the diagram uses Booch’s draw-

ing conventions, these conventions are very close to those used in Jacobson’s interaction

diagrams and OMT’s event trace diagrams. An example using OMT’s notation of interac-

tions among the objects involved in a phone call is shown in Figure A-15. In all cases, ver-

tical lines representing specific objects are labeled with the type of the object at the top;

horizontal arrows represent interactions between objects, directed from the client object to

close
schedule

schedule

Packing
Order

Stock
Person

Inventory
Database Order ShippingAgent

Figure A-14. Interaction Diagram for an Order Packing Scenario

assign

query

update
update

Stockperson presents order to
shipping for delivery

Agent initiates a packing order for
action by a stockperson

For each product in the order:

A packing order is assigned to the
next available stockperson

Stockperson queries location

Stockperson retrieves product
and adds it to the order

Source: [BOO94a, p. 388]

A-43

the server object; labels on the arrows indicate the type of service requested by the client

object; and interactions are listed in temporal order from the top to the bottom of the dia-

gram. Booch and Jacobson optionally describe the individual interactions in a column to

the left, as shown in Figure A-14.

Booch discusses two types of diagrams for modeling dynamic behavior between

objects in a scenario. His “interaction diagram” in Figure A-14 is described as a generali-

zation of OMT’s event trace diagrams and Jacobson’s interaction diagrams [BOO94a, p.

217]. His other type of dynamic diagram, which he calls an “object diagram,” is his original

approach for representing such dynamics using a graph of cloud-like Booch object icons

connected by arcs displaying their interaction events. These object diagrams are entirely

distinct from the object/class models discussed previously, which are purely static models.

Both Booch’s interaction diagrams and his object diagrams have very similar information

connection broken connection broken

caller lifts receiver

dial tone begins

caller dials digit (5)

dial tone ends

dials (5)

dials (5)

dials (1)

dials (2)

dials (3)

dials (4)

ringing tone

tone stops

phones connected

caller hangs up

phone rings

answers phone

ringing stops

phones connected

callee hangs up

Caller Phone line Callee

Figure A-15. Event Trace Diagram for a Phone Call
Source: [RUMB91, p. 87]

A-44

content but in different forms. We use interaction diagrams for illustrative purposes because

their design better reveals the temporal flow of the events in a scenario, and because they

are employed by more methodologies.

Another type of representation for the dynamics of scenario interactions is the

“event flow diagram” used by OMT to display interactions at a higher level between groups

of objects (such as modules). In these diagrams, modules are represented by rectangles that

are connected with directed arcs between them labeled with their interactions. The

sequence of operations, however, is not identified. While such high-level event flow

diagrams may aid in organizing modules, the interaction diagrams provide an essential

basis for determining the state transition requirements of individual objects. Every event

with which an object is involved (as either client or server) on an interaction diagram may

correspond to a transition on its state transition diagram. Different scenarios typically gen-

erate overlapping sets of such transitions; these sets must be combined into one coherent

set of possible transitions for each object class whose transitions are sufficiently complex.

A.3.3 Generating State Transition Diagrams

When the interaction dynamics of the objects in a class are sufficiently complex,

OO analysis and design benefit from modeling the objects as finite state machines whose

state changes over time in response to its interactions. Finite state machine models are com-

monly represented by state transition graphs in which the states of an object (or subsystem)

are represented by icons, and the transitions between their states are represented by directed

arcs labeled with the transition events, as illustrated in Figure A-16.

The illustrated state transition diagram is taken from Rumbaugh [RUMB91] who,

along with Booch and others, adapts the notation developed by Harel [HARL87]. It shows

the different states of a phone line—Idle, Dial Tone, Dialing, Connecting, Ringing, etc.—

and the events that are required to transition between them. Other elaborations on arcs and

states are described by the key, though they are not needed for this example. While there

are substantial differences in other methodologies in the drawing conventions used for such

state diagrams, the basic content is practically the same.

The states in state transition diagrams for OO modeling are the states of the object

being modeled, which are understood as an abstraction of some range of values of the mod-

el’s attributes and associations. A given state might correspond to a particular range of one

or more attribute values, as a bank account state of beingoverdrawn can correspond to a

negative amount in abalance attribute. Alternatively, special attributes may be created for

A-45

a class to identify some or all of its states. Different states need be distinguished in OO

modeling only insofar as they determine different responses to events. Events in an OO

modeling context are occurrences of requests for services from one object to another. Thus,

it is only when an object’s services or operations respond differently, depending on its con-

dition, that different states must be distinguished.

State transition diagrams represent the complete dynamic behavior of a single

object for all the scenarios in which it may participate. Interaction diagrams, in contrast,

show the dynamic behavior of a group of objects for just a single scenario. Both types of

dial digit(n)

Figure A-16. A State Transition Diagram for a Phone Line

event1 (attribs) [condition1] / action1 State2
....

State1
do:activity1

KEY

Recorded
Message

Idle
on-hook

Time-out

Busy Tone
Fast

Busy Tone

Disconnected

Connected

Ringing

Connecting

time-out

digit(n)

invalid
number

routed

on-hook

off-hook

time-out

message
done

trunk busy

number busy

called phone hangs up

called phone answers

Dialing

Source: [RUM91 p. 90]

Dial Tone

A-46

dynamic modeling diagrams are helpful in determining how an object’s operations should

respond to different sequences of events. Each event in an interaction or state diagram rep-

resents a request for a service (or a call of an operation), and the response may often depend

on the prior sequence of events. Thus, modeling such sequences using multiple scenarios

and interaction diagrams helps ensure that the full breadth of intended behavior is captured

for those involved objects.

 If object interactions are simple enough and the responses of specific classes do not

vary much within a scenario or between different scenarios, it may be straightforward to

proceed directly to algorithm design for the operations involved. However, when there is

substantial variation and context dependency in the operational responses, an intermediary

step of detailed modeling of individual object dynamics can be very helpful. State transition

diagrams provide such detailed models, integrating all the dynamics of the different scenar-

ios in which an object participates. Figure A-16 illustrates how the state transition diagram

for a phone line captures all the possible events in which it participates for the event trace

diagram of Figure A-15, as well as for others not illustrated there. The transitions to differ-

ent types of busy signals shown on the phone line state diagram, for example, appear on the

state diagram but not in the normal phone connection event trace diagram of Figure A-15.

State transition diagrams may be used at different levels of granularity and during

different phases of development to model subsystems, blocks, modules, or individual

objects. Booch recommends developing state transition diagrams during analysis for the

system as a whole, and delaying dynamic analysis of individual classes or collaborations of

classes until the design phase [BOO94a, p. 200]. Jacobson postpones his use of state tran-

sition graphs until design, and focuses their application at the level of blocks which consist

of one to several closely related classes [JACO93, pp. 233-241]. Rumbaugh focuses on

modeling individual classes with state diagrams during dynamic modeling in his analysis

phase. However, he allows that these models, along with the other analysis models, may be

optimized, refined, or extended during the design phase [RUMB91, p. 264].

State transition diagrams are widely recommended for analyzing just those

classes, blocks, and subsystems whose dynamic behavior is complex enough to

benefit from the clarification they provide for design and implementation of their

context-dependent operations.

A-47

It is possible to do effective OO development without any use of state transition dia-

grams, as evidenced by the existence of OO methodologies, such as Wirfs-Brock’s Respon-

sibility-Driven Design [HUTT94], which do not include them anywhere within their

lifecycle. However, as the interactions in a system become more complex, it also becomes

increasingly difficult to design and implement context-dependent operations without the

aid of a detailed general dynamic model which may be constructed using state transition

diagrams.

A-48

A.4 FUNCTIONAL MODELING

The essence of functional modeling is the modeling of system functions and their

effects. System functions can be modeled at multiple levels from the overall primary func-

tions of a system to the detailed functional transformations of individual pieces of data.

Indeed, it is the successive decomposition of system functions into their constituent func-

tions that forms the heart of traditional structured analysis and design techniques. While

there is nothing object oriented about functional modeling, some OO methodologies incor-

porate some functional modeling among their modeling techniques.

 Informal functional modeling exists in many OO methodologies under the guise of

activities such as “key mechanism” analysis [BOO94a], scenario analysis [RUMB91], or

use case analysis [JACO93]. Such analyses tend to be fairly high-level characterizations of

system functionality, commonly expressed in natural language. These high-level functional

analyses provide an effective means of initial expression of system requirements which are

ordinarily quickly transitioned to OO models in terms of objects, their attributes, and their

services. At the other end of the spectrum of level-of-detail are detailed functional models

of the algorithms used in implementing specific object operations. This functional model-

ing is also common in OO development methodologies where it typically appears either

late in the design stage or during implementation. However, neither of these types of func-

tional modeling is the focus of what is ordinarily meant by “functional modeling” when it

appears as a separate activity within an OO development methodology. Rather, the func-

tional model is commonly understood to refer to “multiple data flow diagrams which show

the flow of values from external inputs, through operations and internal data stores, to exter-

nal outputs” [RUMB91, p. 123].

Data flow diagrams model the flow of data through a system as it is transformed by

processes that operate upon it. An example adapted from Rumbaugh [RUMB91] is present-

ed in Figure A-17. This diagram uses a common data flow notation wherein external entities

are represented by labeled boxes, data flows are illustrated by labeled arrows, processes are

shown as elliptical icons, and data stores appear between horizontal bars. Functional mod-

eling is pursued by decomposing higher-level functions and generating the corresponding

lower-level data flow diagram for each non-primitive process. The data flow diagrams may

then be augmented by descriptions of each function or process in the diagrams, and of any

constraints on data values or processes.

Data flow models like the one displayed in Figure A-17 can be used within an OO

development to aid the identification of objects, their attributes, and their services. Meth-

A-49

odologies, like OMT, that incorporate data flow diagrams offer guidance on extracting

object information from them. It is obvious that processes should map into objects services

and data stores should map into the object attributes. But determining which objects map

to which processes and data stores is not a trivial procedure. Some of the procedures for

handling this transition are discussed in a companion report on reengineering systems strat-

egies [IDA95d].

Among OO methodologies there is a wide variation on the extent of functional

modeling that they prescribe. Some, like Booch, intentionally limit the extent of functional

modeling in order to avoid “polluting the design with preconceived algorithmic notions”

[BOO94a, p. 161]. Others, such as OMT and the Shlaer-Mellor method, prescribe function-

al analysis of the system using a series of data flow diagrams. Whether data flow diagrams

are a help or a hindrance in OO development remains debatable.

Recently, Rumbaugh has clarified his position on his usage of data flow diagrams,

as follows:

There has been a good deal of misunderstanding regarding the role of data
flow diagrams in the OMT methodology. We never intended that one should
perform an SA/SD-like data flow analysis of a system. The functional mod-
el is intended to show the dependencies between values in the system. It is
usually best expressed in equations, as I have done above. On the other
hand, it is often useful to be able to see the relationships between the various

read
inputs

Figure A-17. Data Flow Diagram for an Automated Teller Machine

Cash
card

Account

User

perform
transaction

generate
outputs

password,
transaction kind,
amount,
account type

messages,
cash,
receipt

balance

bank code,
card code

Source: [RUMB91, p. 181]

A-50

functions and values, and a data flow diagram can show the relationships
graphically, just as an object diagram shows structural relationships.
[RUMB93, p. 18].

More recently still, Rumbaugh has acknowledged that “trying to integrate data flow dia-

grams with purely object-oriented models just doesn’t work very well” [BOO94b, p. 3].

Some OO methodologies, such as Information Engineering \with Objects (IE\O)

[HUTT94, pp. 85-92], include functional data flow models as optional components of their

analysis model. Even Booch allows the data flow diagrams of structured analysis may be

used as a front end to OO design, though he warns that “our experience indicates that using

structured analysis as a front end to object-oriented design often fails when the developer

is unable to resist the urge of falling back into the abyss of the structured design mindset”

[BOO94a, p. 161]. Simply adding functional modeling to object and dynamic modeling

during analysis should carry less risk than its exclusive use. But it is not clear that such an

addition would contribute much of any value to the analysis products. If scenario analysis

has already been performed carefully, then any functionality that would be covered by a

data flow diagram should already be covered in the dynamic model, where it is tightly inte-

grated with the objects of the object model. Separate functional modeling could act as a

check on the other models, but it is not clear that this is the best approach to such checking,

especially if it threatens to distort the OO design.

One situation in which the functional models characteristic of structured analysis

can be helpful arises when they already exist as part of the documentation of a legacy

system that is being modernized. In such situations, legacy data flow diagrams may aid the

reverse engineering of system requirements and the identification of scenarios and objects

from the outset. When such a legacy system is being ported to an OO system, the migration

system development still requires object and dynamic modeling, whether these are consid-

ered part of analysis or design. Implementing an OO system without first developing mod-

els of object structure and behavior would be merely “hacking” code, not “engineering”

software. While functional models of legacy systems can aid understanding of require-

ments, they can never substitute for the OO models essential to OO software engineering.

Further discussion of transitioning from the functional models of structured analysis to OO

analysis and design is presented in a companion report [IDA95d] where a variety of reengi-

neering strategies are described.

A-51

Given the widely acknowledged problems in incorporating data flow diagrams into

OO development and the redundancy of any information they might provide, we rec-

ommend against their usage unless they already exist, whence they may be used to aid

OO modeling, though at some peril of “falling back into the abyss of the structured

mindset.”

A-52

References-1

LIST OF REFERENCES

[ANSI92] American National Standards Institute, ANSI X3.135-1992,Database Lan-

guage SQL, New York, NY, 1992.

[ARNL94] T. R. Arnold and W. A. Fuson, “Testing ‘In A Perfect World’,”Communica-

tions of the ACM, Vol. 37, No. 9, September 1994, pp. 78-86.

[BARB94] S. Barbey, M. Ammann, and A. Strohmeier,Open Issues in Testing Object-

Oriented Software, Technical Report No. 94/45. Departement D’Informa-

tique, Swiss Federal Institute of Technology—Lausanne, Switzerland, 1994.

[BIND94a] R. V. Binder, “Object-Oriented Software Testing: Introduction,”Communi-

cations of the ACM, Vol. 37, No. 9, September 1994, pp. 28-29.

[BIND94b] R. V. Binder, “Design for Testability in Object-Oriented Systems,”Commu-

nications of the ACM, Vol. 37, No. 9, September 1994, pp. 87-101.

[BKCN89] K. Beck, and W. Cunningham, “A Laboratory for Teaching Object-Oriented

Thinking,” SIGPLAN Notices, Vol. 24, No. 10, 1989.

[BMDO94] Ballistic Missile Defense Organization,National Missile Defense Battle

Management, Command, Control and Communications Domain Information

Architecture, Washington, DC, 25 October 1994.

[BOO94a] G. Booch,Object-Oriented Analysis and Design with Applications. Ben-

jamin/Cummings, Redwood City, CA, 1994.

[BOO94b] G. Booch, “The Booch Method: Scenarios,”Report on Object Analysis and

Design, Vol. 1, No. 3, September-October 1994.

[CATT93] R. G. G. Cattell, editor,The Object Database Standard: ODMG-93, Morgan

Kaufmann, San Mateo, CA, 1993.

[CATT94] R. G. G. Cattell,Object Data Management: Object-Oriented and Extended

Relational Database Systems, Addison-Wesley, Reading, MA, 1994.

[CDYD91] P. Coad and E. Yourdon, Object-Oriented Analysis, 2nd edition, Yourdon

Press, Englewood Cliffs, NJ, 1991.

References-2

[DOD88] Department of Defense, DOD-STD-2167A,Defense System Software Devel-

opment, Washington, DC, U. S. Government Printing Office, February 29,

1988.

[DOD90] Department of Defense,A Plan for Corporate Information Management for

the Department of Defense, forwarded by the Executive Level Group for

Defense Corporate Information Management, September 11, 1990.

[DOD91] Department of Defense,Software Technology Strategy, prepared for the

Director of Defense Research and Engineering (DDR&E) in partial fulfill-

ment of the DDR&E Software Action Plan, December 1991.

[DOD92a] Department of Defense, MIL-STD-SDD (Draft),Software Development and

Documentations, December 22, 1992.

[DOD92b] Department of Defense, DoD 8020.1-M (Draft), Functional Management

Process for Implementing the Information Management Program of the

Department of Defense,August 1992.

[DOD93a] Department of Defense, DoD Directive 8120.1,Life-Cycle Management

(LCM) of Automated Information Systems (AISs), January 14, 1993.

[DOD93b] Department of Defense, DoD Instruction 8120.2,Automated Information

System Life-Cycle Management Process, Review, and Milestone Approval

Procedures, January 14, 1993.

[DOD93c] Department of Defense, Defense Information Systems Agency, Center for

Architecture,Technical Architecture Framework for Information Manage-

ment, Version 2.0, November 1, 1993.

[DOD93d] MIL-STD-498 (SDD)Software Development and Documentation, presenta-

tion by Raghu Singh of The DoD Software Harmonization Working Group,

December 9, 1993.

[DOD93e] Department of Defense, Memorandum: From Director of Defense Informa-

tion. Subject: Interim Management Guidance on the Technical Architecture

for Information Management, January 15, 1993.

[DOD94a] Department of Defense, MIL-STD-498,Software Development and Docu-

mentation, December 5, 1994.

[DOD94b] Department of Defense,Data Item Descriptions (DIDs) for MIL-STD-498,

December 5, 1994.

References-3

[DOD94c] Department of Defense, DOD-STD-7935A (Revision A),Automated Infor-

mation Systems (AIS) Documentation Standards, December 5, 1994.

[HARL87] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”Science

of Computer Programming, 8, 1987.

[HARR93a] Harris Data Services Corporation,Software Development Plan (SDP) for the

Base Level System Modernization. Contract No. F01620-88-D-0086, CDRL

Sequence No. A056, prepared for Standard Systems Center (AFCC), Director

of Contracting, Maxwell AFB - Gunter Annex, AL, Harris Data Services Cor-

poration, Montgomery AL, October 1993.

[HEND94] B. Henderson-Sellers, R. Jordan Kreindler, S. Mickel, “Methodology Choic-

es—Adapt or Adopt?,”Report on Object Analysis and Design, Vol. 1, No. 4,

November/December 1994, pp. 26-29.

[HRTY93] P. Harmon, D. Taylor, and W. Morrissey,Objects in Action: Commercial

Applications of Object-Oriented Technologies, Addison-Wesley, Reading,

MA, 1993.

[HUTT94] A. T. F. Hutt, editor,Object Analysis and Design: Description of Methods,

John Wiley & Sons, New York, NY, 1994.

[IDA93a] K. Jordan et al.,An Assessment of the Potential Implementation of Object-

Oriented Technology in the Department of Defense, IDA Paper P-2904, Insti-

tute for Defense Analyses, Alexandria, VA, October 1993.

[IDA95a] B. A. Haugh, M. C. Frame, and K. Jordan,An Object-Oriented Development

Process for Department of Defense Information Systems, IDA Paper P-3142,

Institute for Defense Analyses, Alexandria, VA, July 1995.

[IDA95b] D. Smith, B. Haugh, K. Jordan,Object-Oriented Programming Strategies for

Ada, IDA Paper P-3143, Institute for Defense Analyses, Alexandria, VA,

July 1995.

[IDA95c] B. Haugh, A. Noor, D. Smith, K. Jordan,Legacy System Wrapping for

Department of Defense Information System Modernization, IDA Paper P-

3144, Institute for Defense Analyses, Alexandria, VA, July 1995.

[IDA95d] K. Jordan, B. Haugh,Software Reengineering Using Object-Oriented Tech-

nology, IDA Paper P-3145, Institute for Defense Analyses, Alexandria, VA,

July 1995.

References-4

[INTR93] Intermetrics, Inc.,Introducing Ada 9X: Ada 9X Project Report, prepared for

the Office of the Under Secretary of Defense for Acquisition, Washington,

DC, 1993.

[JACO93] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,Object-Oriented

Software Engineering: A Use Case Driven Approach, Addison-Wesley,

Reading, MA, 1993.

[LIPP91] S. B. Lippman,C++ Primer, 2nd edition, Addison-Wesley, Reading, MA,

1991.

[LOOM95] M. E. S. Loomis,Object Database: The Essentials, Addison-Wesley, Read-

ing, MA, 1995.

[MCGR94] J. D. McGregor and T. D. Korson, “Integrating Object-Oriented Testing and

Development Processes,”Communications of the ACM, Vol. 37, No. 9, Sep-

tember 1994, pp. 59-77.

[MRPH94] G. C. Murphy, P. Townsend, and P. S. Wong, “Experiences With Cluster and

Class Testing,”Communications of the ACM, Vol. 37, No. 9, September,

1994, pp. 39-47.

[NEWB95] G. A. Newberry, “Changes from DOD-STD-2167A to MIL-STD-498,”

CrossTalk, Vol. 8, No. 4, April 1995, pp. 4-7.

[PSTN94] R. M. Poston, “Automated Testing from Object Models,” Communications of

the ACM, Vol. 37, No. 9, September 1994, pp. 48-58.

[RUMB91] J. Rumbaugh, M. Blaha, W. Premerlani, E. Frederick, and W. Lorensen,

Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ,

1991.

[SIGS95] SIGS Conferences, “Booch & Rumbaugh on Tour: The Evolution of Object

Methods,” (advertisement)Object Magazine, Vol. 4, No. 9, February 1995,

p. 49.

[TAYL92] D. A. Taylor, Object-Oriented Information Systems: Planning and Imple-

mentation, John Wiley & Sons, New York, NY, 1992.

[TOPR95] A. Topper, “Methodology: Object Technology ‘95,” Object Magazine, Vol.

4, No. 9, February 1995, pp. 20-22.

[WILK94] Nancy Wilkinson, “An Informal Introduction,”Report on Object Analysis

and Design, Vol. 1, No. 4, November/December 1994, pp. 41-43.

Glossary-1

GLOSSARY

Words used in the definition of a glossary term and that are defined elsewhere in the

glossary are inbold.

Abstraction Abstraction consists of focusing on the essential, inherent

aspects of an entity and ignoring its accidental properties

[RUMB91].

AIS Program A directed and funded AIS effort, to include allmigration sys-

tems, that is designed to provide a new or improved capability

in response to a validated need [DOD93a].

Architecture The organizational structure of a system orCSCI, identifying

its components, their interfaces, and a concept of execution

among them [DOD94a].

Automated

Information System

(AIS)

A combination ofcomputer hardware and computersoftware,

data, and/or telecommunications that performs functions such

as collecting, processing, transmitting, and displaying informa-

tion. Excluded are computer resources, both hardware and soft-

ware, that are either physically part of, dedicated to, or essential

in real time to the mission performance of weapon systems;

used forweapon system specialized training, simulation, diag-

nostic test and maintenance, or calibration; or used for research

and development of weapon systems [DOD93a]. However, as

used here, AISs include systems for C2I, C3I, and C4I, even

though they may be essential in real time to mission perfor-

mance.

Class A class can be defined as a description of similarobjects, like a

template or cookie cutter [NEL91]. The class of an object is the

definition or description of those attributes and behaviors of

interest.

Glossary-2

Collaboration A request from a client to a server in fulfillment of a client’s

responsibilities [HUTT94, p. 192].

Commercial-off-the-

Shelf (COTS)

Commercial items that require no unique government modifica-

tions or maintenance over the life cycle of the product to meet

the needs of the procuring agency [DOD93a].

Computer Hardware Devices capable of accepting and storing computer data, exe-

cuting a systematic sequence of operations and computer data,

or producing control outputs. Such devices can perform sub-

stantial interpretation, computation, communication, control, or

other logical functions [DOD94a].

Computer Program A combination of computer instructions and data definitions

that enablecomputer hardware to perform computational or

control functions [DOD94a].

Computer Software

Configuration Item

(CSCI)

An aggregation of software that satisfies an end use function

and is designated for separate configuration management by the

acquirer. CSCIs are selected based on tradeoffs among software

function, size, host or target computers, developer, support con-

cept, plans for reuse, criticality, and interface considerations

need to be separately documented and controlled, and other fac-

tors [DOD94a].

Contract The list of requests that a clientclass can make of a server class.

Both must fulfill the contract: the client by making only those

requests the contract specifies, and the server by responding

appropriately to those requests [HUTT94, p. 192].

CRC Cards Class-Responsibility-Collaborator Cards. CRC cards are

pieces of paper divided into three areas: theclass name and the

purpose of the class, the responsibilities of the class, and the

collaborators of the class. CRC cards are intended to be used to

iteratively simulate different scenarios of using the system to

get a better understanding of its nature [HUTT94, p. 192].

Database A collection of related data stored in one or more computerized

files in a manner that can be accessed by users or computer pro-

grams via a database management system [DOD94a].

Glossary-3

Database

Management System

An integrated set of computer programs that provide the capa-

bilities needed to establish, modify, make available, and main-

tain the integrity of a database [DOD94a].

Encapsulation . . . (alsoinformation hiding) consists of separating the exter-

nal aspects of anobject, which are accessible to other objects,

from the internal implementation details of the object, which

are hidden from other objects [RUMB91]. The act of grouping

into a single object both data and the operation that affects that

data [WIR90].

Framework A collection ofclass libraries, generics, design, scenario mod-

els, documentation, etc., that serves as a platform to build appli-

cations.

Government-off-the-

Shelf (GOTS)

Products for which the Government owns the data rights, that

are authorized to be transferred to other DoD or Government

customers, and that require no unique modifications or mainte-

nance over the life cycle of the product [DOD93b].

Inheritance Inheritance is the sharing of attributes and operations among

classes based on a hierarchical relationship [RUMB91]. Sub-

classes of aclass inherit the operations of the parent class and

may add new operations and new instance variables. Inheritance

allows us to reuse the behavior of a class in the definition of

new classes [WEG90].

Information Hiding Making the internal data and methods inaccessible by separat-

ing the external aspects of anobject from the internal (hidden)

implementation details of the object.

Information System SeeAutomated Information System (AIS).

Legacy System Any currently operating automated system that incorporates

obsolete computer technology, such as proprietary hardware,

closed systems, “stovepipe” design, or obsolete programming

languages ordatabase systems.

Life-Cycle

Management (LCM)

A management process, applied throughout the life of anAIS,

that bases all programmatic decisions on the anticipated mis-

Glossary-4

sion-related and economic benefits derived over the life of the

AIS [DOD93a].

Message Mechanism by whichobjects in an OO system requestservices

of each other. Sometimes this is used as a synonym foropera-

tion.

Method An operation upon anobject, defined as part of the declaration

of aclass; all methods areoperations, but not all operations are

methods [BOO94a].

Migration The transition of support and operations of software functional-

ity from a legacy system to amigration system.

Migration System An existingAIS, or a planned and approved AIS, that has been

officially designated to support standard processes for a func-

tional activity applicable DoD-wide or DoD Component-wide

[DOD93a]. Ordinarily, an AIS that has been designated to

assume the functionality of a legacy AIS.

Monomorphism A concept in type theory, according to which a name (such as a

variable declaration) may only denoteobjects of the sameclass

[BOO94a].

Object A combination of state and a set of methods that explicitly

embodies anabstraction characterized by the behavior of rele-

vant requests. Anobject is an instance of an implementation

and an interface. An object models a real-world entity (such as a

person, place, thing, or concept), and it is implemented as a

computational entity that encapsulates state and operations

(internally implemented as data and methods) and responds to

requestor services.

Object-Based

Programming

A method of programming in which programs are organized as

cooperative collections ofobjects, each of which represents an

instance of some type, and whose types are all members of a

hierarchy of types . . . somewhat constrained by the existence of

static binding andmonomorphism [BOO94a].

Glossary-5

Object-Oriented

Analysis

A method of analysis in which requirements are examined from

the perspective of theclasses andobjects found in the vocabu-

lary of the problem domain [BOO94a].

Object-Oriented

Decomposition

The process of breaking a system into parts, each of which rep-

resents someclass or object from the problem domain

[BOO94a].

Object-Oriented

Design

A method of design encompassing the process of OO decompo-

sition and a notation for depicting both logical and physical as

well as static and dynamic models of the system under design

[BOO94a].

Object-Oriented

Programming

A method of implementation in which programs are organized

as cooperative collections ofobjects, each of which represents

an instance of someclass, and whose classes are members of a

hierarchy of classes united viainheritance relationships. In

such programs, classes are generally viewed as static, whereas

objects typically have a much more dynamic nature, which is

encouraged by the existence of dynamic binding andpolymor-

phism [BOO94a].

Object-Oriented

Technology (OOT)

OOT consists of a set of methodologies and tools for develop-

ing and maintaining software systems using softwareobjects

composed of encapsulated data and operations as the central

paradigm.

Object Request

Broker (ORB)

Program that provides a location and implementation-

independent mechanism for passing amessage from oneobject

to another.

Operation A specific behavior that anobject exhibits, implemented as a

procedure (or function) contained within the object.

Polymorphism The same operation may behave differently on different classes

[RUMB91].

Reengineering The process of examining and altering an existing system to

reconstitute it in a new form. May include reverse engineering

(analyzing a system and producing a representation at a higher

Glossary-6

level of abstraction, such as design from code), restructuring

(transforming a system from one representation to another at

the same level of abstraction), redocumentation (analyzing a

system and producing user or support documentation), forward

engineering (using software products derived from an existing

system, together with new requirements, to produce a new sys-

tem), retargeting (transforming a system to install it on a differ-

ent target system), and translation (transforming source code

from one language to another or from one version of a language

to another) [DOD94a].

Requirement (1) Characteristic that a system orCSCI must possess in order

to be acceptable to the acquirer. (2) A mandatory statement in

this standard or another portion of thecontract [DOD94a].

Responsibility A contract that aclass must support, intended to convey a

sense of the purpose of the class and its place in the system

[HUTT94, p. 192].

Service A service is a specific behavior that an object is responsible for

exhibiting [CDYD91].

Software Computer programs and computer databases. Note: Although

some definitions of software includes documentation, MIL-

STD-498 limits the scope of this term to computer programs

and computer databases in accordance with Defense Federal

Acquisition Regulation Supplement 227.401 [DOD94a].

Software

Development

A set of activities that results insoftware products. Software

development may include new development, modification,

reuse,reengineering, or any other activities that result in soft-

ware products [DOD94a].

Software

Engineering

In general usage, a synonym forsoftware development. As

used in this standard [MIL-STD 498], a subset of software

development consisting of all activities except qualification test-

ing. The standard makes this distinction for the sole purpose of

giving separate names to the software engineering and software

test environments [DOD94a].

Glossary-7

Software

Engineering

Environment

The facilities, hardware, software, firmware, procedures, and

documentation needed to performsoftware engineering. Ele-

ments may include but are not limited to computer-aided soft-

ware engineering (CASE) tools, compilers, assemblers, linkers,

loaders, operating systems, debuggers, simulators, emulators,

documentation tools, anddatabase management systems

[DOD94a].

Software System A system consisting solely of software and possibly the com-

puter equipment on which the software operates [DOD94a].

Weapon System Items that can be used directly by the Armed Forces to carry out

combat missions and that cost more than 100,000 dollars or for

which the eventual total procurement cost is more than 10 mil-

lion dollars. That term does not include commercial items sold

in substantial quantities to the general public (Section 2403 of

10 U.S.C., reference (bb)) [DOD93a].

Glossary-8

Acronyms-1

LIST OF ACRONYMS

AI Artificial Intelligence

AIS Automated Information Systems

AMO At Most One

ANSI American National Standards Institute

API Application Programming Interface

ARPA Advanced Research Projects Agency

BDE Borland Database Engine

BLOB Binary Large Object

BLSM Base-Level System Modernization

C2I Command, Control and Information

C3I Command, Control, Communications, and Intelligence

C4I Command, Control, Communications, Computers, and Intelligence

CAD Computer-Aided Design

CASE Computer-Aided Software Engineering

CIM Corporate Information Management

COTS Commercial off-the-Shelf

CORBA Common Object Request Broker Architecture

CRC Class-Responsibility-Collaborators

CY Calendar Year

DBMS Database Management Systems

DID Data Item Description

DISA Defense Information Systems Agency

DoD Department of Defense

GCCS Global Command and Control System

Acronyms-2

GIS Geographical Information System

GUI Graphical User Interface

IDA Institute for Defense Analyses

IDAPI Integration Database Application Program Interface

LCM Life-Cycle Management

MDA Milestone Decision Authority

NDI Non-Developmental Item

ODBC Open Database Connection

ODM Object Data Management

ODMG Object Data Management Group

OID Object Identification

OMB Office of Management and Budget

OMG Object Management Group

OMT Object Modeling Technique (Rumbaugh’s OOT methodology)

OO Object Oriented

OOA Object-Oriented Analysis

OOD Object-Oriented Design

OODBMS Object-Oriented Database Management System

OOP Object-Oriented Programming

OOPSLA Object-Oriented Programming Systems, Languages, and Applications

OOSE Object-Oriented Software Engineering

OOT Object-Oriented Technology

ORB Object Request Broker

ORDBMS Object Relational Database Management System

OSD Office of the Secretary of Defense

PDSS Post-Deployment Software Support

PM Program Manager

RA Requirements Analysis

RDA Remote Data Access

Acronyms-3

RDBMS Relational Database Management System

SOMA Semantic Object Oriented Modeling Approach

SSS System/Segment Specification

TAFIM Technical Architecture Framework for Information Management

Acronyms-4

